Congcong Jiang, Jinhong Kan, Guangqi Gao, Christoph Dockter, Chengdao Li, Wenxue Wu, Ping Yang, Nils Stein
{"title":"Barley2035: A decade vision on barley research and breeding.","authors":"Congcong Jiang, Jinhong Kan, Guangqi Gao, Christoph Dockter, Chengdao Li, Wenxue Wu, Ping Yang, Nils Stein","doi":"10.1016/j.molp.2024.12.009","DOIUrl":null,"url":null,"abstract":"<p><p>Barley (Hordeum vulgare ssp. vulgare) is one of the oldest founder crops in early human civilization, and has been widely dispersed around the globe to supply human life through livestock feeding and brewing industries. It has been used in innovative research of cytogenetics, biochemistry, and genetics since the early half of the 20<sup>th</sup> century, facilitated by its mode of reproduction through self-pollination, its true diploid status which has contributed to the accumulation of a plethora of germplasm and mutant resources. Coming to the era of molecular genomics and biology, a multitude of barley genes and their involved regulatory mechanisms have been uncovered and functionally validated, providing the paradigm for equivalent studies in other Triticeae crops. This review features the advancements over the past decade in barley research, mainly regarding genomics and genomics-assisted germplasm exploration, genetic dissection of developmental and adaptation associated traits, as well as the complex dynamics of yield and quality formation. For the coming decade, the perspective of integration of these innovations in barley research and breeding is promising. Barley is proposed as a reference in Triticeae crops for new gene discovery, functional validation and molecular mechanism dissection. The application of precise genome editing as well as genomic prediction and selection, further enhanced by artificial intelligence-enforced tools and applications, is expected to boost barley improvement, in order to efficiently meet the evolving global demands for this important crop.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":""},"PeriodicalIF":17.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2024.12.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Barley (Hordeum vulgare ssp. vulgare) is one of the oldest founder crops in early human civilization, and has been widely dispersed around the globe to supply human life through livestock feeding and brewing industries. It has been used in innovative research of cytogenetics, biochemistry, and genetics since the early half of the 20th century, facilitated by its mode of reproduction through self-pollination, its true diploid status which has contributed to the accumulation of a plethora of germplasm and mutant resources. Coming to the era of molecular genomics and biology, a multitude of barley genes and their involved regulatory mechanisms have been uncovered and functionally validated, providing the paradigm for equivalent studies in other Triticeae crops. This review features the advancements over the past decade in barley research, mainly regarding genomics and genomics-assisted germplasm exploration, genetic dissection of developmental and adaptation associated traits, as well as the complex dynamics of yield and quality formation. For the coming decade, the perspective of integration of these innovations in barley research and breeding is promising. Barley is proposed as a reference in Triticeae crops for new gene discovery, functional validation and molecular mechanism dissection. The application of precise genome editing as well as genomic prediction and selection, further enhanced by artificial intelligence-enforced tools and applications, is expected to boost barley improvement, in order to efficiently meet the evolving global demands for this important crop.
期刊介绍:
Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution.
Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.