Advancement in piezoelectric nanogenerators for acoustic energy harvesting.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Fandi Jean, Muhammad Umair Khan, Anas Alazzam, Baker Mohammad
{"title":"Advancement in piezoelectric nanogenerators for acoustic energy harvesting.","authors":"Fandi Jean, Muhammad Umair Khan, Anas Alazzam, Baker Mohammad","doi":"10.1038/s41378-024-00811-4","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for sustainable energy sources to power small electronics like IoT devices has led to exploring innovative solutions like acoustic energy harvesting using piezoelectric nanogenerators (PENGs). Acoustic energy harvesting leverages ambient noise, converting it into electrical energy through the piezoelectric effect, where certain materials generate an electric charge in response to mechanical stress or vibrations. This review paper provides a comprehensive analysis of the advancements in PENG technology, emphasizing their role in acoustic energy harvesting. We begin by discussing the essential principles of piezoelectricity and the design considerations for nanogenerators to optimize energy capture from sound waves. The discussion includes a detailed examination of various piezoelectric materials, such as polyvinylidene fluoride (PVDF), lead zirconate titanate (PZT), and zinc oxide (ZnO) nanowires, which are known for their superior piezoelectric properties. A critical aspect of this review is the exploration of innovative structural designs and resonance devices that enhance the efficiency of PENGs. We delve into the mechanisms and benefits of using Helmholtz resonators, quarter-wavelength tubes, and cantilever beams, which are instrumental in amplifying acoustic signals and improving energy conversion rates. Each device's design parameters and operational principles are scrutinized to highlight their contributions to the field. The review addresses practical applications of PENGs in various domains. Environmental monitoring systems, wearable electronics, and medical devices stand to benefit significantly from the continuous and sustainable power supplied by PENGs. These applications can reduce reliance on batteries and minimize maintenance by harnessing ambient acoustic energy, leading to more efficient and longer-lasting operations. Despite the promising potential of PENGs, several challenges remain, including material degradation, efficiency limitations, and integrating these devices into existing technological frameworks. This paper discusses these obstacles in detail and proposes potential solutions to enhance the longevity and performance of PENG systems. Innovations in material science and engineering are crucial to overcoming these hurdles and realizing the full potential of acoustic energy harvesting.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"197"},"PeriodicalIF":7.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00811-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for sustainable energy sources to power small electronics like IoT devices has led to exploring innovative solutions like acoustic energy harvesting using piezoelectric nanogenerators (PENGs). Acoustic energy harvesting leverages ambient noise, converting it into electrical energy through the piezoelectric effect, where certain materials generate an electric charge in response to mechanical stress or vibrations. This review paper provides a comprehensive analysis of the advancements in PENG technology, emphasizing their role in acoustic energy harvesting. We begin by discussing the essential principles of piezoelectricity and the design considerations for nanogenerators to optimize energy capture from sound waves. The discussion includes a detailed examination of various piezoelectric materials, such as polyvinylidene fluoride (PVDF), lead zirconate titanate (PZT), and zinc oxide (ZnO) nanowires, which are known for their superior piezoelectric properties. A critical aspect of this review is the exploration of innovative structural designs and resonance devices that enhance the efficiency of PENGs. We delve into the mechanisms and benefits of using Helmholtz resonators, quarter-wavelength tubes, and cantilever beams, which are instrumental in amplifying acoustic signals and improving energy conversion rates. Each device's design parameters and operational principles are scrutinized to highlight their contributions to the field. The review addresses practical applications of PENGs in various domains. Environmental monitoring systems, wearable electronics, and medical devices stand to benefit significantly from the continuous and sustainable power supplied by PENGs. These applications can reduce reliance on batteries and minimize maintenance by harnessing ambient acoustic energy, leading to more efficient and longer-lasting operations. Despite the promising potential of PENGs, several challenges remain, including material degradation, efficiency limitations, and integrating these devices into existing technological frameworks. This paper discusses these obstacles in detail and proposes potential solutions to enhance the longevity and performance of PENG systems. Innovations in material science and engineering are crucial to overcoming these hurdles and realizing the full potential of acoustic energy harvesting.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信