{"title":"Enhancing animal breeding through quality control in genomic data - a review.","authors":"Jungjae Lee, Jong Hyun Jung, Sang-Hyon Oh","doi":"10.5187/jast.2024.e92","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput genotyping and sequencing has revolutionized animal breeding by providing access to vast amounts of genomic data to facilitate precise selection for desirable traits. This shift from traditional methods to genomic selection provides dense marker information for predicting genetic variants. However, the success of genomic selection heavily depends on the accuracy and quality of the genomic data. Inaccurate or low-quality data can lead to flawed predictions, compromising breeding programs and reducing genetic gains. Therefore, stringent quality control (QC) measures are essential at every stage of data processing. QC in genomic data involves managing single nucleotide polymorphism (SNP) quality, assessing call rates, and filtering based on minor allele frequency (MAF) and Hardy-Weinberg equilibrium (HWE). High-quality SNP data is crucial because genotyping errors can bias the estimates of breeding values. Cost-effective low-density genotyping platforms often require imputation to deduce missing genotypes. QC is vital for genomic selection, genome-wide association studies (GWAS), and population genetics analyses because it ensures data accuracy and reliability. This paper reviews QC strategies for genomic data and emphasizes their applications in animal breeding programs. By examining various QC tools and methods, this review highlights the importance of data integrity in achieving successful outcomes in genomic selection, GWAS, and population analyses. Furthermore, this review covers the critical role of robust QC measures in enhancing the reliability of genomic predictions and advancing animal breeding practices.</p>","PeriodicalId":14923,"journal":{"name":"Journal of Animal Science and Technology","volume":"66 6","pages":"1099-1108"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647403/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5187/jast.2024.e92","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
High-throughput genotyping and sequencing has revolutionized animal breeding by providing access to vast amounts of genomic data to facilitate precise selection for desirable traits. This shift from traditional methods to genomic selection provides dense marker information for predicting genetic variants. However, the success of genomic selection heavily depends on the accuracy and quality of the genomic data. Inaccurate or low-quality data can lead to flawed predictions, compromising breeding programs and reducing genetic gains. Therefore, stringent quality control (QC) measures are essential at every stage of data processing. QC in genomic data involves managing single nucleotide polymorphism (SNP) quality, assessing call rates, and filtering based on minor allele frequency (MAF) and Hardy-Weinberg equilibrium (HWE). High-quality SNP data is crucial because genotyping errors can bias the estimates of breeding values. Cost-effective low-density genotyping platforms often require imputation to deduce missing genotypes. QC is vital for genomic selection, genome-wide association studies (GWAS), and population genetics analyses because it ensures data accuracy and reliability. This paper reviews QC strategies for genomic data and emphasizes their applications in animal breeding programs. By examining various QC tools and methods, this review highlights the importance of data integrity in achieving successful outcomes in genomic selection, GWAS, and population analyses. Furthermore, this review covers the critical role of robust QC measures in enhancing the reliability of genomic predictions and advancing animal breeding practices.
期刊介绍:
Journal of Animal Science and Technology (J. Anim. Sci. Technol. or JAST) is a peer-reviewed, open access journal publishing original research, review articles and notes in all fields of animal science.
Topics covered by the journal include: genetics and breeding, physiology, nutrition of monogastric animals, nutrition of ruminants, animal products (milk, meat, eggs and their by-products) and their processing, grasslands and roughages, livestock environment, animal biotechnology, animal behavior and welfare.
Articles generally report research involving beef cattle, dairy cattle, pigs, companion animals, goats, horses, and sheep. However, studies involving other farm animals, aquatic and wildlife species, and laboratory animal species that address fundamental questions related to livestock and companion animal biology will also be considered for publication.
The Journal of Animal Science and Technology (J. Anim. Technol. or JAST) has been the official journal of The Korean Society of Animal Science and Technology (KSAST) since 2000, formerly known as The Korean Journal of Animal Sciences (launched in 1956).