{"title":"Thiol-Functionalized Cobalt Ferrite (CoFe<sub>2</sub>O<sub>4</sub>@MPTS) Nanoparticles as Cutting-Edge Adsorbents for Bovine Serum Albumin.","authors":"Muhammad Tariq Shah, Esra Alveroglu, Abdullah","doi":"10.1007/s10895-024-04084-y","DOIUrl":null,"url":null,"abstract":"<p><p>This paper describes the synthesis of CoFe₂O₄ nanoparticles via a simple ultrasonic-assisted co-precipitation method and their functionalization with thiol groups using (3-Mercaptopropyl)trimethoxysilane (MPTS) as the functionalizing agent. The use of ultrasonic energy not only serves as a green energy source but also reduces the reaction time fivefold compared to conventional methods. The synthesized CoFe₂O₄ nanoparticles were characterized for their surface and internal properties using instrumental techniques such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Vibrating Sample Magnetometer (VSM). The functionalized nanoparticles were applied for the effective adsorption of bovine serum albumin (BSA) from a buffered aqueous medium. To enhance the adsorption performance, the influence of pH, amount of solid adsorbent, initial BSA concentration, shaking time, and temperature on protein adsorption was investigated. Lagergren pseudo-second-order adsorption kinetics fitted the BSA adsorption data well, with an acceptable R² value of 0.976. Additionally, the BSA adsorption data were analyzed using Langmuir and Freundlich isotherm models, and it was concluded that the experimental data followed the Langmuir equation more closely than the Freundlich equation. At an initial pH of 5.57 (acetate buffer), the adsorption capacity (Q₀) for BSA protein was found to be 200 mg/g. The thermodynamic study revealed ΔS° and ΔH° values of 17.40 J/mol·K and - 45.37 kJ/mol, respectively.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-04084-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes the synthesis of CoFe₂O₄ nanoparticles via a simple ultrasonic-assisted co-precipitation method and their functionalization with thiol groups using (3-Mercaptopropyl)trimethoxysilane (MPTS) as the functionalizing agent. The use of ultrasonic energy not only serves as a green energy source but also reduces the reaction time fivefold compared to conventional methods. The synthesized CoFe₂O₄ nanoparticles were characterized for their surface and internal properties using instrumental techniques such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Vibrating Sample Magnetometer (VSM). The functionalized nanoparticles were applied for the effective adsorption of bovine serum albumin (BSA) from a buffered aqueous medium. To enhance the adsorption performance, the influence of pH, amount of solid adsorbent, initial BSA concentration, shaking time, and temperature on protein adsorption was investigated. Lagergren pseudo-second-order adsorption kinetics fitted the BSA adsorption data well, with an acceptable R² value of 0.976. Additionally, the BSA adsorption data were analyzed using Langmuir and Freundlich isotherm models, and it was concluded that the experimental data followed the Langmuir equation more closely than the Freundlich equation. At an initial pH of 5.57 (acetate buffer), the adsorption capacity (Q₀) for BSA protein was found to be 200 mg/g. The thermodynamic study revealed ΔS° and ΔH° values of 17.40 J/mol·K and - 45.37 kJ/mol, respectively.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.