Solution of the space-fractional diffusion equation on bounded domains of superdiffusive phenomena.

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Diego A Monroy, Ernesto P Raposo
{"title":"Solution of the space-fractional diffusion equation on bounded domains of superdiffusive phenomena.","authors":"Diego A Monroy, Ernesto P Raposo","doi":"10.1103/PhysRevE.110.054119","DOIUrl":null,"url":null,"abstract":"<p><p>Space-fractional diffusion equations find widespread application in nature. They govern the anomalous dynamics of many stochastic processes, generalizing the standard diffusion equation to superdiffusive behavior. Strikingly, the solution of space-fractional diffusion equations on bounded domains is still an open problem. This is in part due to the difficulty of handling nonlocal boundary conditions ascribed to the space-fractional derivative, leading to the failure of standard methods. Here we revisit the space-fractional diffusion equation in one spatial dimension with bounded domains and present a solution in terms of weighted Jacobi polynomials. Calculated eigenvalues and eigenfunctions in the superdiffusive regime show remarkable agreement with results from numerical discretization of the space-fractional derivative operator and Monte Carlo simulations. To exemplify, we apply the proposed solution to obtain the exact mean residence time or mean first-passage time, first-passage-time distribution, and survival probability, in agreement with known results for the superdiffusive regime. The system of equations converges rather fast for the first eigensolutions, as is desirable for practical application purposes in superdiffusive phenomena.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054119"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054119","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Space-fractional diffusion equations find widespread application in nature. They govern the anomalous dynamics of many stochastic processes, generalizing the standard diffusion equation to superdiffusive behavior. Strikingly, the solution of space-fractional diffusion equations on bounded domains is still an open problem. This is in part due to the difficulty of handling nonlocal boundary conditions ascribed to the space-fractional derivative, leading to the failure of standard methods. Here we revisit the space-fractional diffusion equation in one spatial dimension with bounded domains and present a solution in terms of weighted Jacobi polynomials. Calculated eigenvalues and eigenfunctions in the superdiffusive regime show remarkable agreement with results from numerical discretization of the space-fractional derivative operator and Monte Carlo simulations. To exemplify, we apply the proposed solution to obtain the exact mean residence time or mean first-passage time, first-passage-time distribution, and survival probability, in agreement with known results for the superdiffusive regime. The system of equations converges rather fast for the first eigensolutions, as is desirable for practical application purposes in superdiffusive phenomena.

超扩散现象有界域上空间分数扩散方程的解。
空间分数扩散方程在自然界中有着广泛的应用。它们控制着许多随机过程的反常动力学,将标准扩散方程推广到超扩散行为。引人注目的是,有界域上空间分数扩散方程的解仍然是一个开放问题。这部分是由于难以处理归因于空间分数阶导数的非局部边界条件,导致标准方法的失败。在这里,我们重新审视空间-分数扩散方程在一维有界域的空间-分数扩散方程,并给出了一个加权雅可比多项式的解。计算得到的超扩散区特征值和特征函数与空间分数阶导数算子的数值离散化和蒙特卡罗模拟结果一致。为了举例说明,我们应用所提出的解决方案来获得准确的平均停留时间或平均首次通过时间,首次通过时间分布和生存概率,与超扩散状态的已知结果一致。对于第一特征解,方程组收敛得相当快,这在超扩散现象的实际应用中是可取的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信