Dynamical localization in nonideal kicked rotors driven by two competing pulsatile modulations.

IF 2.4 3区 物理与天体物理 Q1 Mathematics
F Revuelta, R Chacón, F Borondo
{"title":"Dynamical localization in nonideal kicked rotors driven by two competing pulsatile modulations.","authors":"F Revuelta, R Chacón, F Borondo","doi":"10.1103/PhysRevE.110.054202","DOIUrl":null,"url":null,"abstract":"<p><p>We study dynamical localization in an ultracold atom confined in an optical lattice that is simultaneously shaken by two competing pulsatile modulations with different amplitudes, periods, and waveforms. The effects of finite-width time pulses, modulation waveforms, and commensurable and incommensurable driving periods are investigated. We describe a particularly complex scenario and conclude that dynamical localization can survive, or even increase, when a periodic modulation is replaced by a quasiperiodic one of equal amplitude. Our analytical and numerical results indicate that there exists a strong correlation between the strengths of chaos (stochastic layer width) and dynamical localization (difference between the classical and quantum momentum dispersions) over the entire parameter space, which is maintained regardless of the periodic or quasiperiodic nature of the modulation. This persistent correlation provides a useful guide to optimally control the strength of dynamical localization by tuning the modulation parameters in real-world systems subjected to pulses of finite width.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054202"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054202","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We study dynamical localization in an ultracold atom confined in an optical lattice that is simultaneously shaken by two competing pulsatile modulations with different amplitudes, periods, and waveforms. The effects of finite-width time pulses, modulation waveforms, and commensurable and incommensurable driving periods are investigated. We describe a particularly complex scenario and conclude that dynamical localization can survive, or even increase, when a periodic modulation is replaced by a quasiperiodic one of equal amplitude. Our analytical and numerical results indicate that there exists a strong correlation between the strengths of chaos (stochastic layer width) and dynamical localization (difference between the classical and quantum momentum dispersions) over the entire parameter space, which is maintained regardless of the periodic or quasiperiodic nature of the modulation. This persistent correlation provides a useful guide to optimally control the strength of dynamical localization by tuning the modulation parameters in real-world systems subjected to pulses of finite width.

由两种相互竞争的脉冲调制驱动的非理想踢转子中的动态定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信