Frog Fibres: What Muscle Architecture Can Tell Us About Anuran Locomotor Function

IF 1.5 4区 医学 Q2 ANATOMY & MORPHOLOGY
Alice Leavey, Christopher T. Richards, Laura B. Porro
{"title":"Frog Fibres: What Muscle Architecture Can Tell Us About Anuran Locomotor Function","authors":"Alice Leavey,&nbsp;Christopher T. Richards,&nbsp;Laura B. Porro","doi":"10.1002/jmor.70016","DOIUrl":null,"url":null,"abstract":"<p>Muscle fibre architecture is an important aspect of anatomy to consider when estimating muscle properties. How fibre architecture varies across species specialising in different locomotor functions is not well understood in anurans, due to difficulties associated with fibre extraction in small animals using traditional methods. This paper presents the first digital analysis of fibre architecture in frogs using an automated fibre-tracking algorithm and contrast-enhanced µCT scans. We find differences in hindlimb muscle fibre architecture between frogs specialising in different locomotor modes, as well as examples of many-to-one mapping of form to function. The trade-off between fibre length and muscle physiological cross-sectional area, and therefore contractile speed, range of motion and muscle force output, differs significantly between jumpers and swimmers, but not walker-hoppers. Where species place on this functional spectrum of fibre architecture largely depends on the muscle being examined. There is also some evidence that fibre length may be adjusted to increase contractile speed without undertaking the metabolically expensive process of growing and maintaining larger muscles. Finally, we make a detailed outline of the remaining gaps in our understanding of anuran fibre architecture that can now be addressed with this valuable digital method in future research.</p>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"286 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jmor.70016","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Morphology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmor.70016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Muscle fibre architecture is an important aspect of anatomy to consider when estimating muscle properties. How fibre architecture varies across species specialising in different locomotor functions is not well understood in anurans, due to difficulties associated with fibre extraction in small animals using traditional methods. This paper presents the first digital analysis of fibre architecture in frogs using an automated fibre-tracking algorithm and contrast-enhanced µCT scans. We find differences in hindlimb muscle fibre architecture between frogs specialising in different locomotor modes, as well as examples of many-to-one mapping of form to function. The trade-off between fibre length and muscle physiological cross-sectional area, and therefore contractile speed, range of motion and muscle force output, differs significantly between jumpers and swimmers, but not walker-hoppers. Where species place on this functional spectrum of fibre architecture largely depends on the muscle being examined. There is also some evidence that fibre length may be adjusted to increase contractile speed without undertaking the metabolically expensive process of growing and maintaining larger muscles. Finally, we make a detailed outline of the remaining gaps in our understanding of anuran fibre architecture that can now be addressed with this valuable digital method in future research.

Abstract Image

青蛙纤维:肌肉结构能告诉我们蛙类运动功能。
在估计肌肉特性时,肌纤维结构是解剖学的一个重要方面。由于使用传统方法提取小动物的纤维存在困难,因此在无尾动物中,纤维结构在不同物种之间的差异是如何专门用于不同的运动功能的,目前尚不清楚。本文首次使用自动纤维跟踪算法和对比度增强的微CT扫描对青蛙的纤维结构进行了数字分析。我们发现不同运动模式的青蛙在后肢肌纤维结构上存在差异,以及形式到功能的多对一映射的例子。纤维长度和肌肉生理截面积之间的权衡,以及因此产生的收缩速度、运动范围和肌肉力量输出,在跳远运动员和游泳运动员之间存在显著差异,但在跳远运动员之间则没有。物种在纤维结构的功能谱上的位置很大程度上取决于被检查的肌肉。也有一些证据表明,可以通过调整纤维长度来提高收缩速度,而无需进行生长和维持更大肌肉的代谢昂贵过程。最后,我们详细概述了我们对anuran纤维结构的理解中的剩余差距,这些差距现在可以在未来的研究中使用这种有价值的数字方法来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Morphology
Journal of Morphology 医学-解剖学与形态学
CiteScore
2.80
自引率
6.70%
发文量
119
审稿时长
1 months
期刊介绍: The Journal of Morphology welcomes articles of original research in cytology, protozoology, embryology, and general morphology. Articles generally should not exceed 35 printed pages. Preliminary notices or articles of a purely descriptive morphological or taxonomic nature are not included. No paper which has already been published will be accepted, nor will simultaneous publications elsewhere be allowed. The Journal of Morphology publishes research in functional, comparative, evolutionary and developmental morphology from vertebrates and invertebrates. Human and veterinary anatomy or paleontology are considered when an explicit connection to neontological animal morphology is presented, and the paper contains relevant information for the community of animal morphologists. Based on our long tradition, we continue to seek publishing the best papers in animal morphology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信