Dynamical phase transitions in the XY model: A Monte Carlo and mean-field-theory study.

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Mainak Pal, William D Baez, Pushan Majumdar, Arnab Sen, Trinanjan Datta
{"title":"Dynamical phase transitions in the XY model: A Monte Carlo and mean-field-theory study.","authors":"Mainak Pal, William D Baez, Pushan Majumdar, Arnab Sen, Trinanjan Datta","doi":"10.1103/PhysRevE.110.054109","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the dynamical phases and phase transitions arising in a classical two-dimensional anisotropic XY model under the influence of a periodically driven temporal external magnetic field in the form of a symmetric square wave. We use a combination of finite temperature classical Monte Carlo simulation, implemented within a CPU+GPU paradigm, utilizing local dynamics provided by the Glauber algorithm and a phenomenological equation-of-motion approach based on relaxational dynamics governed by the time-dependent free energy within a mean-field approximation to study the model. We investigate several parameter regimes of the variables (magnetic field, anisotropy, and the external drive frequency) that influence the anisotropic XY system. We identify four possible dynamical phases: Ising-SBO, Ising-SRO, XY-SBO, and XY-SRO. Both techniques indicate that only three of them (Ising-SRO, Ising-SBO, and XY-SRO) are stable dynamical phases in the thermodynamic sense. Within the Monte Carlo framework, a finite-size scaling analysis, shows that XY-SBO does not survive in the thermodynamic limit giving way to either an Ising-SBO or a XY-SRO regime. The finite-size scaling analysis further shows that the transitions between the three remaining dynamical phases either belong to the two-dimensional Ising universality class or are first-order in nature. Within the mean-field calculations yield three stable dynamical phases, i.e., Ising-SRO, Ising-SBO and XY-SRO, where the final steady state is independent of the initial condition chosen to evolve the equations of motion, as well as a region of bistability where the system flows to either Ising-SBO or XY-SRO (Ising-SRO) depending on the initial condition. Unlike the stable dynamical phases, the XY-SBO represents a transient feature that is eventually lost to either Ising-SBO or XY-SRO. Our mean-field analysis highlights the importance of the competition between switching of the stationary point(s) of the free energy after each half cycle of the external field and the two-dimensional nature of the phase space for the equations of motion.</p>","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"110 5-1","pages":"054109"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.054109","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the dynamical phases and phase transitions arising in a classical two-dimensional anisotropic XY model under the influence of a periodically driven temporal external magnetic field in the form of a symmetric square wave. We use a combination of finite temperature classical Monte Carlo simulation, implemented within a CPU+GPU paradigm, utilizing local dynamics provided by the Glauber algorithm and a phenomenological equation-of-motion approach based on relaxational dynamics governed by the time-dependent free energy within a mean-field approximation to study the model. We investigate several parameter regimes of the variables (magnetic field, anisotropy, and the external drive frequency) that influence the anisotropic XY system. We identify four possible dynamical phases: Ising-SBO, Ising-SRO, XY-SBO, and XY-SRO. Both techniques indicate that only three of them (Ising-SRO, Ising-SBO, and XY-SRO) are stable dynamical phases in the thermodynamic sense. Within the Monte Carlo framework, a finite-size scaling analysis, shows that XY-SBO does not survive in the thermodynamic limit giving way to either an Ising-SBO or a XY-SRO regime. The finite-size scaling analysis further shows that the transitions between the three remaining dynamical phases either belong to the two-dimensional Ising universality class or are first-order in nature. Within the mean-field calculations yield three stable dynamical phases, i.e., Ising-SRO, Ising-SBO and XY-SRO, where the final steady state is independent of the initial condition chosen to evolve the equations of motion, as well as a region of bistability where the system flows to either Ising-SBO or XY-SRO (Ising-SRO) depending on the initial condition. Unlike the stable dynamical phases, the XY-SBO represents a transient feature that is eventually lost to either Ising-SBO or XY-SRO. Our mean-field analysis highlights the importance of the competition between switching of the stationary point(s) of the free energy after each half cycle of the external field and the two-dimensional nature of the phase space for the equations of motion.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信