Investigation of EMI-shielding properties of buckypaper manufactured with an easily scalable method.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zaur Nuriakhmetov, Yuri Chernousov, Dmitry Smovzh, Vladimir Andryushchenko
{"title":"Investigation of EMI-shielding properties of buckypaper manufactured with an easily scalable method.","authors":"Zaur Nuriakhmetov, Yuri Chernousov, Dmitry Smovzh, Vladimir Andryushchenko","doi":"10.1088/1361-6528/ada03b","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a straightforward and easily scalable method for producing buckypapers. These thin films consist of single-walled carbon nanotubes (SWCNTs) dispersed on a PET substrate using an airbrushing technique, followed by solvent evaporation. Notably, this process requires minimal equipment complexity. The study investigates the electrical properties of buckypapers made from both purified and unpurified SWCNTs, as well as chemical vapor deposition graphene. Specifically, we focus on their electromagnetic interference (EMI) shielding effectiveness in the<i>S</i>-band of microwaves (2-4 GHz). To evaluate this, we installed buckypaper and graphene plates within a waveguide cross section. The results show that these buckypapers exhibit high overall shielding effectiveness. It is found that buckypapers based on purified carbon nanotubes have higher shielding parameters (due higher electrical conductivity measured by TRL method) than those based on unpurified CNTs. In summary, our approach offers a practical route for manufacturing effective EMI shielding materials, with potential applications in various technological domains.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada03b","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a straightforward and easily scalable method for producing buckypapers. These thin films consist of single-walled carbon nanotubes (SWCNTs) dispersed on a PET substrate using an airbrushing technique, followed by solvent evaporation. Notably, this process requires minimal equipment complexity. The study investigates the electrical properties of buckypapers made from both purified and unpurified SWCNTs, as well as chemical vapor deposition graphene. Specifically, we focus on their electromagnetic interference (EMI) shielding effectiveness in theS-band of microwaves (2-4 GHz). To evaluate this, we installed buckypaper and graphene plates within a waveguide cross section. The results show that these buckypapers exhibit high overall shielding effectiveness. It is found that buckypapers based on purified carbon nanotubes have higher shielding parameters (due higher electrical conductivity measured by TRL method) than those based on unpurified CNTs. In summary, our approach offers a practical route for manufacturing effective EMI shielding materials, with potential applications in various technological domains.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信