Hongmin Sun, Lingyan Jiang, Jingnan Chen, Chenbo Kang, Jun Yan, Shuai Ma, Mengjie Zhao, Houliang Guo, Bin Yang
{"title":"Genomic island-encoded LmiA regulates acid resistance and biofilm formation in enterohemorrhagic <i>Escherichia coli</i> O157:H7.","authors":"Hongmin Sun, Lingyan Jiang, Jingnan Chen, Chenbo Kang, Jun Yan, Shuai Ma, Mengjie Zhao, Houliang Guo, Bin Yang","doi":"10.1080/19490976.2024.2443107","DOIUrl":null,"url":null,"abstract":"<p><p>Enterohemorrhagic <i>Escherichia coli</i> (EHEC) O157:H7 is an important intestinal pathogen that causes severe foodborne diseases. We previously demonstrated that the genomic island-encoded regulator LmiA activates the locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence and colonization in the host intestine. However, whether LmiA is involved in the regulation of any other biological processes in EHEC O157:H7 remains largely unexplored. Here, we compared global gene expression differences between the EHEC O157:H7 wild-type strain and an <i>lmiA</i> mutant strain using RNA-seq technology. Genes whose expression was affected by LmiA were identified and classified using the Cluster of Orthologous Groups (COG) database. Specifically, the expression of acid resistance genes (including <i>gadA</i>, <i>gadB</i>, and <i>gadC</i>) was significantly downregulated, whereas the transcript levels of biofilm-related genes (including <i>Z_RS00105</i>, <i>yadN</i>, <i>Z_RS03020</i>, and <i>fdeC</i>) were increased, in the Δ<i>lmiA</i> mutant compared to the EHEC O157:H7 wild-type strain. Further investigation revealed that LmiA enhanced the acid resistance of EHEC O157:H7 by directly activating the transcription of <i>gadA</i> and <i>gadBC</i>. In contrast, LmiA reduced EHEC O157:H7 biofilm formation by indirectly repressing the expression of biofilm-related genes. Furthermore, LmiA-mediated regulation of acid resistance and biofilm formation is highly conserved and widespread among EHEC and enteropathogenic <i>E. coli</i> (EPEC). Our findings provide essential insight into the regulatory function of LmiA in EHEC O157:H7, particularly its role in regulating acid resistance and biofilm formation.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":"17 1","pages":"2443107"},"PeriodicalIF":12.2000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2024.2443107","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important intestinal pathogen that causes severe foodborne diseases. We previously demonstrated that the genomic island-encoded regulator LmiA activates the locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence and colonization in the host intestine. However, whether LmiA is involved in the regulation of any other biological processes in EHEC O157:H7 remains largely unexplored. Here, we compared global gene expression differences between the EHEC O157:H7 wild-type strain and an lmiA mutant strain using RNA-seq technology. Genes whose expression was affected by LmiA were identified and classified using the Cluster of Orthologous Groups (COG) database. Specifically, the expression of acid resistance genes (including gadA, gadB, and gadC) was significantly downregulated, whereas the transcript levels of biofilm-related genes (including Z_RS00105, yadN, Z_RS03020, and fdeC) were increased, in the ΔlmiA mutant compared to the EHEC O157:H7 wild-type strain. Further investigation revealed that LmiA enhanced the acid resistance of EHEC O157:H7 by directly activating the transcription of gadA and gadBC. In contrast, LmiA reduced EHEC O157:H7 biofilm formation by indirectly repressing the expression of biofilm-related genes. Furthermore, LmiA-mediated regulation of acid resistance and biofilm formation is highly conserved and widespread among EHEC and enteropathogenic E. coli (EPEC). Our findings provide essential insight into the regulatory function of LmiA in EHEC O157:H7, particularly its role in regulating acid resistance and biofilm formation.
期刊介绍:
The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more.
Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.