Novel inhibitors of PARP1 and PARP14: design, synthesis, and potentiation of cisplatin efficacy in cancer.

IF 3.2 4区 医学 Q3 CHEMISTRY, MEDICINAL
Caleb M T Kam, Amanda L Tauber, Matthew S Zunk, Catherine M McDermott, Stephan M Levonis, Stephanie S Schweiker
{"title":"Novel inhibitors of PARP1 and PARP14: design, synthesis, and potentiation of cisplatin efficacy in cancer.","authors":"Caleb M T Kam, Amanda L Tauber, Matthew S Zunk, Catherine M McDermott, Stephan M Levonis, Stephanie S Schweiker","doi":"10.1080/17568919.2024.2437972","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Poly(ADP-ribose) polymerase (PARP) is a superfamily of enzymes involved in cell survival. Both PARP1 and PARP14 are overexpressed in malignancies. No clinically approved PARP14 inhibitors are available, and PARP1 inhibitors are generally nonspecific, resulting in a need for a more diverse library of selective PARP1 and PARP14 inhibitors.</p><p><strong>Materials and methods: </strong>Based on the previous lead compounds <b>1</b> and <b>2</b>, 26 novel compounds were designed, synthesized, and screened against PARP1 and PARP14. Compounds with the best in vitro inhibitory results were further screened against PARP2, PARP3, PARP5a, PARP7, and PARP15.</p><p><strong>Results and conclusion: </strong>The 26 novel compounds demonstrated a lesser inhibitory effect than the lead compounds. Compounds <b>1</b> and <b>2</b> were further investigated using in vitro cell viability assays, which revealed that cells treated with either lead PARP inhibitor and cisplatin in combination had significantly lower survival rates than those treated with cisplatin alone. At 10 µM, the combination showed more significant cell survival reduction, suggesting greater inhibition of PARP increases lethality, particularly in HeLa and PC-3 cell lines at 96 h and beyond.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"1-24"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2437972","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Poly(ADP-ribose) polymerase (PARP) is a superfamily of enzymes involved in cell survival. Both PARP1 and PARP14 are overexpressed in malignancies. No clinically approved PARP14 inhibitors are available, and PARP1 inhibitors are generally nonspecific, resulting in a need for a more diverse library of selective PARP1 and PARP14 inhibitors.

Materials and methods: Based on the previous lead compounds 1 and 2, 26 novel compounds were designed, synthesized, and screened against PARP1 and PARP14. Compounds with the best in vitro inhibitory results were further screened against PARP2, PARP3, PARP5a, PARP7, and PARP15.

Results and conclusion: The 26 novel compounds demonstrated a lesser inhibitory effect than the lead compounds. Compounds 1 and 2 were further investigated using in vitro cell viability assays, which revealed that cells treated with either lead PARP inhibitor and cisplatin in combination had significantly lower survival rates than those treated with cisplatin alone. At 10 µM, the combination showed more significant cell survival reduction, suggesting greater inhibition of PARP increases lethality, particularly in HeLa and PC-3 cell lines at 96 h and beyond.

背景:聚(ADP-核糖)聚合酶(PARP)是参与细胞存活的超家族酶。PARP1和PARP14在恶性肿瘤中均过度表达。目前还没有临床批准的 PARP14 抑制剂,而 PARP1 抑制剂一般都是非特异性的,因此需要一个更多样化的选择性 PARP1 和 PARP14 抑制剂库:在先前先导化合物 1 和 2 的基础上,设计、合成并筛选了 26 种新型 PARP1 和 PARP14 抑制剂。结果与结论:26 个新型化合物对 PARP1 和 PARP14 的体外抑制效果最佳,并对 PARP2、PARP3、PARP5a、PARP7 和 PARP15 进行了进一步筛选:结果:26 种新型化合物的抑制效果低于先导化合物。利用体外细胞存活率测定对化合物 1 和 2 进行了进一步研究,结果显示,PARP 抑制剂和顺铂联合使用时,细胞的存活率明显低于单独使用顺铂时的存活率。当浓度为 10 µM 时,联合使用会更明显地降低细胞存活率,这表明 PARP 的抑制作用越强,致死率就越高,尤其是在 96 小时及以后的 HeLa 和 PC-3 细胞系中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Future medicinal chemistry
Future medicinal chemistry CHEMISTRY, MEDICINAL-
CiteScore
5.80
自引率
2.40%
发文量
118
审稿时长
4-8 weeks
期刊介绍: Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信