Bridging minds and machines: Unmasking the limits in text-based automatic personality recognition for enhanced psychology-AI synergy.

IF 3.2 2区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Avanti Bhandarkar, Ronald Wilson, Anushka Swarup, Gregory D Webster, Damon Woodard
{"title":"Bridging minds and machines: Unmasking the limits in text-based automatic personality recognition for enhanced psychology-AI synergy.","authors":"Avanti Bhandarkar, Ronald Wilson, Anushka Swarup, Gregory D Webster, Damon Woodard","doi":"10.1111/bjop.12755","DOIUrl":null,"url":null,"abstract":"<p><p>Text-based automatic personality recognition (APR) operates at the intersection of artificial intelligence (AI) and psychology to determine the personality of an individual from their text sample. This covert form of personality assessment is key for a variety of online applications that contribute to individual convenience and well-being such as that of chatbots and personal assistants. Despite the availability of good quality data utilizing state-of-the-art AI methods, the reported performance of these recognition systems remains below expectations in comparable areas. Consequently, this work investigates and identifies the source of this performance limit and attributes it to the flawed assumptions of text-based APR. These insights are obtained via a large-scale comprehensive benchmark and analysis of text data from five corpora with diverse characteristics and complementary personality models (Big Five and Dark Triad) applied to an assortment of AI methods ranging from hand-crafted linguistic features to data-driven transformers. Finally, the work concludes by identifying the open problems that can help navigate the limitations in text-based automatic personality recognition to a great extent.</p>","PeriodicalId":9300,"journal":{"name":"British journal of psychology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British journal of psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bjop.12755","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Text-based automatic personality recognition (APR) operates at the intersection of artificial intelligence (AI) and psychology to determine the personality of an individual from their text sample. This covert form of personality assessment is key for a variety of online applications that contribute to individual convenience and well-being such as that of chatbots and personal assistants. Despite the availability of good quality data utilizing state-of-the-art AI methods, the reported performance of these recognition systems remains below expectations in comparable areas. Consequently, this work investigates and identifies the source of this performance limit and attributes it to the flawed assumptions of text-based APR. These insights are obtained via a large-scale comprehensive benchmark and analysis of text data from five corpora with diverse characteristics and complementary personality models (Big Five and Dark Triad) applied to an assortment of AI methods ranging from hand-crafted linguistic features to data-driven transformers. Finally, the work concludes by identifying the open problems that can help navigate the limitations in text-based automatic personality recognition to a great extent.

连接思想与机器:揭开基于文本的自动人格识别的局限,增强心理学与人工智能的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
British journal of psychology
British journal of psychology PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.50%
发文量
67
期刊介绍: The British Journal of Psychology publishes original research on all aspects of general psychology including cognition; health and clinical psychology; developmental, social and occupational psychology. For information on specific requirements, please view Notes for Contributors. We attract a large number of international submissions each year which make major contributions across the range of psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信