Ligand binding kinetics to evaluate the function and stability of A2AR in nanodiscs.

IF 3.2 3区 生物学 Q2 BIOPHYSICS
John M Pettersen, Olivia McCracken, Anne Skaja Robinson
{"title":"Ligand binding kinetics to evaluate the function and stability of A<sub>2A</sub>R in nanodiscs.","authors":"John M Pettersen, Olivia McCracken, Anne Skaja Robinson","doi":"10.1016/j.bpj.2024.12.018","DOIUrl":null,"url":null,"abstract":"<p><p>G-protein-coupled receptors (GPCRs) represent one of the largest classes of therapeutic targets. However, developing successful therapeutics to target GPCRs is a challenging endeavor, with many molecules failing during in vivo clinical trials due to a lack of efficacy. The in vitro identification of drug-target residence time (1/k<sub>off</sub>) has been suggested to improve predictions of in vivo success. Here, a ligand binding assay using fluorescence anisotropy was implemented to successfully determine on rates (k<sub>on</sub>) and off rates (k<sub>off</sub>) of labeled and unlabeled ligands binding to the adenosine A<sub>2A</sub> receptor (A<sub>2A</sub>R) purified into nanodiscs (A<sub>2A</sub>R-NDs). The kinetic assay was used to determine the optimal storage conditions of A<sub>2A</sub>R-NDs, where they were found to be stable for more than 6 months at -80°C. The binding assay was implemented to further understand receptor function by determining the effects of charged lipids on agonist binding kinetics, how sodium levels allosterically modulate A<sub>2A</sub>R function, and how A<sub>2A</sub>R protonation affects agonist binding.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.12.018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

G-protein-coupled receptors (GPCRs) represent one of the largest classes of therapeutic targets. However, developing successful therapeutics to target GPCRs is a challenging endeavor, with many molecules failing during in vivo clinical trials due to a lack of efficacy. The in vitro identification of drug-target residence time (1/koff) has been suggested to improve predictions of in vivo success. Here, a ligand binding assay using fluorescence anisotropy was implemented to successfully determine on rates (kon) and off rates (koff) of labeled and unlabeled ligands binding to the adenosine A2A receptor (A2AR) purified into nanodiscs (A2AR-NDs). The kinetic assay was used to determine the optimal storage conditions of A2AR-NDs, where they were found to be stable for more than 6 months at -80°C. The binding assay was implemented to further understand receptor function by determining the effects of charged lipids on agonist binding kinetics, how sodium levels allosterically modulate A2AR function, and how A2AR protonation affects agonist binding.

通过配体结合动力学评估纳米盘中 A2AR 的功能和稳定性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信