Wenxin Cai, Qiongying Yang, Dan Han, Zhe Chen, Yongjing Cheng
{"title":"[Application and prospects of infrared thermography in rheumatic diseases].","authors":"Wenxin Cai, Qiongying Yang, Dan Han, Zhe Chen, Yongjing Cheng","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Infrared thermography is an advanced technology that utilizes infrared detectors to sense the infrared thermal radiation emitted from the human body' s surface, converting it into electrical signals. These signals are then processed by computers to generate planar temperature color images, providing an intuitive display of the body surface temperature distribution. Rheumatic diseases, as prevalent conditions that significantly impact the quality of life of millions of people worldwide, pose significant challenges in diagnosis and assessment. Traditional diagnostic and evaluation methods, while possessing certain clinical value, exhibit non-negligible limitations. With the advancements and increasing popularity of infrared thermography technology, combined with the progress in medical image recognition and artificial intelligence algorithms, this technology has demonstrated increasingly prominent advantages in the field of rheumatology. By employing this non-invasive and highly efficient technique for analyzing superficial tissue thermal radiation distribution, early and precise diagnosis of rheumatic diseases, as well as dynamic monitoring of disease progression, becomes feasible. This technological advancement enhances the accuracy and efficiency of rheumatic disease diagnosis, thereby alleviating the burden on healthcare systems and optimizing the allocation of medical resources. Furthermore, infrared thermography introduces new vitality into the diagnosis and treatment monitoring of rheumatic diseases. It enables clinicians to detect subtle changes in body surface temperature that may indicate underlying inflammatory or metabolic processes associated with rheumatic conditions. This capability facilitates early intervention and personalized treatment strategies, ultimately contributing to improved patient outcomes and satisfaction. The integration of infrared thermography with advanced image processing algorithms and artificial intelligence further amplifies its potential, enabling automated analysis and interpretation of thermal images, thus reducing the dependence on manual interpretation and enhancing the reproducibility and reliability of diagnostic results. In conclusion, infrared thermography represents as a promising tool in the management of rheumatic diseases, offering a non-invasive, cost-effective, and efficient means for early diagnosis, monitoring, and therapeutic evaluation of diseases. As technology continues to evolve, the application of infrared thermography is expected to advance further in rheumatic diseases.</p>","PeriodicalId":8790,"journal":{"name":"北京大学学报(医学版)","volume":"56 6","pages":"1132-1136"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652976/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"北京大学学报(医学版)","FirstCategoryId":"3","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared thermography is an advanced technology that utilizes infrared detectors to sense the infrared thermal radiation emitted from the human body' s surface, converting it into electrical signals. These signals are then processed by computers to generate planar temperature color images, providing an intuitive display of the body surface temperature distribution. Rheumatic diseases, as prevalent conditions that significantly impact the quality of life of millions of people worldwide, pose significant challenges in diagnosis and assessment. Traditional diagnostic and evaluation methods, while possessing certain clinical value, exhibit non-negligible limitations. With the advancements and increasing popularity of infrared thermography technology, combined with the progress in medical image recognition and artificial intelligence algorithms, this technology has demonstrated increasingly prominent advantages in the field of rheumatology. By employing this non-invasive and highly efficient technique for analyzing superficial tissue thermal radiation distribution, early and precise diagnosis of rheumatic diseases, as well as dynamic monitoring of disease progression, becomes feasible. This technological advancement enhances the accuracy and efficiency of rheumatic disease diagnosis, thereby alleviating the burden on healthcare systems and optimizing the allocation of medical resources. Furthermore, infrared thermography introduces new vitality into the diagnosis and treatment monitoring of rheumatic diseases. It enables clinicians to detect subtle changes in body surface temperature that may indicate underlying inflammatory or metabolic processes associated with rheumatic conditions. This capability facilitates early intervention and personalized treatment strategies, ultimately contributing to improved patient outcomes and satisfaction. The integration of infrared thermography with advanced image processing algorithms and artificial intelligence further amplifies its potential, enabling automated analysis and interpretation of thermal images, thus reducing the dependence on manual interpretation and enhancing the reproducibility and reliability of diagnostic results. In conclusion, infrared thermography represents as a promising tool in the management of rheumatic diseases, offering a non-invasive, cost-effective, and efficient means for early diagnosis, monitoring, and therapeutic evaluation of diseases. As technology continues to evolve, the application of infrared thermography is expected to advance further in rheumatic diseases.
期刊介绍:
Beijing Da Xue Xue Bao Yi Xue Ban / Journal of Peking University (Health Sciences), established in 1959, is a national academic journal sponsored by Peking University, and its former name is Journal of Beijing Medical University. The coverage of the Journal includes basic medical sciences, clinical medicine, oral medicine, surgery, public health and epidemiology, pharmacology and pharmacy. Over the last few years, the Journal has published articles and reports covering major topics in the different special issues (e.g. research on disease genome, theory of drug withdrawal, mechanism and prevention of cardiovascular and cerebrovascular diseases, stomatology, orthopaedic, public health, urology and reproductive medicine). All the topics involve latest advances in medical sciences, hot topics in specific specialties, and prevention and treatment of major diseases.
The Journal has been indexed and abstracted by PubMed Central (PMC), MEDLINE/PubMed, EBSCO, Embase, Scopus, Chemical Abstracts (CA), Western Pacific Region Index Medicus (WPR), JSTChina, and almost all the Chinese sciences and technical index systems, including Chinese Science and Technology Paper Citation Database (CSTPCD), Chinese Science Citation Database (CSCD), China BioMedical Bibliographic Database (CBM), CMCI, Chinese Biological Abstracts, China National Academic Magazine Data-Base (CNKI), Wanfang Data (ChinaInfo), etc.