Johanne Brunet, David W Inouye, Erin E Wilson Rankin, Tereza C Giannini
{"title":"Global change aggravates drought, with consequences for plant reproduction.","authors":"Johanne Brunet, David W Inouye, Erin E Wilson Rankin, Tereza C Giannini","doi":"10.1093/aob/mcae186","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The frequency and intensity of droughts are expected to increase under global change, driven by anthropogenic climate change and water diversion. Precipitation is expected to become more episodic under climate change, with longer and warmer dry spells, although some areas might become wetter. Diversion of freshwater from lakes and rivers and groundwater pumping for irrigation of agricultural fields are lowering water availability to wild plant populations, increasing the frequency and intensity of drought. Given the importance of seasonal changes and extremes in soil moisture to influence plant reproduction, and because the majority of plants are flowering plants and most of them depend on pollinators for seed production, this review focuses on the consequences of drought on different aspects of reproduction in animal-pollinated angiosperms, emphasizing interactions among drought, flowering and pollination.</p><p><strong>Scope: </strong>Visual and olfactory traits play crucial roles in attracting pollinators. Drought-induced floral changes can influence pollinator attraction and visitation, together with pollinator networks and flowering phenology, with subsequent effects on plant reproduction. Here, we review how drought influences these different aspects of plant reproduction. We identify knowledge gaps and highlight areas that would benefit from additional research.</p><p><strong>Conclusions: </strong>Visual and olfactory traits are affected by drought, but their phenotypic responses can vary with floral sex, plant sex, population and species. Ample phenotypic plasticity to drought exists for these traits, providing an ability for a rapid response to a change in drought frequency and intensity engendered by global change. The impact of these drought-induced changes in floral traits on pollinator attraction, pollen deposition and plant reproductive success does not show a clear pattern. Drought affects the structure of plant-pollinator networks and can modify plant phenology. The impact of drought on plant reproduction is not always negative, and we need to identify plant characteristics associated with these more positive responses.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae186","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The frequency and intensity of droughts are expected to increase under global change, driven by anthropogenic climate change and water diversion. Precipitation is expected to become more episodic under climate change, with longer and warmer dry spells, although some areas might become wetter. Diversion of freshwater from lakes and rivers and groundwater pumping for irrigation of agricultural fields are lowering water availability to wild plant populations, increasing the frequency and intensity of drought. Given the importance of seasonal changes and extremes in soil moisture to influence plant reproduction, and because the majority of plants are flowering plants and most of them depend on pollinators for seed production, this review focuses on the consequences of drought on different aspects of reproduction in animal-pollinated angiosperms, emphasizing interactions among drought, flowering and pollination.
Scope: Visual and olfactory traits play crucial roles in attracting pollinators. Drought-induced floral changes can influence pollinator attraction and visitation, together with pollinator networks and flowering phenology, with subsequent effects on plant reproduction. Here, we review how drought influences these different aspects of plant reproduction. We identify knowledge gaps and highlight areas that would benefit from additional research.
Conclusions: Visual and olfactory traits are affected by drought, but their phenotypic responses can vary with floral sex, plant sex, population and species. Ample phenotypic plasticity to drought exists for these traits, providing an ability for a rapid response to a change in drought frequency and intensity engendered by global change. The impact of these drought-induced changes in floral traits on pollinator attraction, pollen deposition and plant reproductive success does not show a clear pattern. Drought affects the structure of plant-pollinator networks and can modify plant phenology. The impact of drought on plant reproduction is not always negative, and we need to identify plant characteristics associated with these more positive responses.
期刊介绍:
Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide.
The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.