Spatiotemporal variation in population dynamics of a narrow endemic, Ranunculus austro-oreganus.

IF 2.4 2区 生物学 Q2 PLANT SCIENCES
Riley D Thoen, Lauren B Hendricks, Graham T Bailes, Bart R Johnson, Laurel Pfeifer-Meister, Paul B Reed, Bitty A Roy, Megan L DeMarche
{"title":"Spatiotemporal variation in population dynamics of a narrow endemic, Ranunculus austro-oreganus.","authors":"Riley D Thoen, Lauren B Hendricks, Graham T Bailes, Bart R Johnson, Laurel Pfeifer-Meister, Paul B Reed, Bitty A Roy, Megan L DeMarche","doi":"10.1002/ajb2.16446","DOIUrl":null,"url":null,"abstract":"<p><strong>Premise: </strong>Understanding how population dynamics vary in space and time is critical for understanding the basic life history and conservation needs of a species, especially for narrow endemic species whose populations are often in similar environments and therefore at increased risk of extinction under climate change. Here, we investigated the spatial and temporal variation in population dynamics of Ranunculus austro-oreganus, a perennial buttercup endemic to fragmented prairie habitat in one county in southern Oregon.</p><p><strong>Methods: </strong>We performed demographic surveys of three populations of R. austro-oreganus over 4 years (2015-2018). We used size-structured population models and life table response experiments to investigate vital rates driving spatiotemporal variation in population growth.</p><p><strong>Results: </strong>Overall, R. austro-oreganus had positive or stable stochastic population growth rates, though individual vital rates and overall population growth varied substantially among sites and years. All populations had their greatest growth in the same year, suggesting potential synchrony associated with climate conditions. Differences in survival contributed most to spatial variation in population growth, while differences in reproduction contributed most to temporal variation in population growth.</p><p><strong>Conclusions: </strong>Populations of this extremely narrow endemic appear stable, with positive growth during our study window. These results suggest that populations of R. austro-oreganus are able to persist if their habitat is not eliminated by land-use change. Nonetheless, its narrow distribution and synchronous population dynamics suggest the need for continued monitoring, particularly with ongoing habitat loss and climate change.</p>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":" ","pages":"e16446"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajb2.16446","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Premise: Understanding how population dynamics vary in space and time is critical for understanding the basic life history and conservation needs of a species, especially for narrow endemic species whose populations are often in similar environments and therefore at increased risk of extinction under climate change. Here, we investigated the spatial and temporal variation in population dynamics of Ranunculus austro-oreganus, a perennial buttercup endemic to fragmented prairie habitat in one county in southern Oregon.

Methods: We performed demographic surveys of three populations of R. austro-oreganus over 4 years (2015-2018). We used size-structured population models and life table response experiments to investigate vital rates driving spatiotemporal variation in population growth.

Results: Overall, R. austro-oreganus had positive or stable stochastic population growth rates, though individual vital rates and overall population growth varied substantially among sites and years. All populations had their greatest growth in the same year, suggesting potential synchrony associated with climate conditions. Differences in survival contributed most to spatial variation in population growth, while differences in reproduction contributed most to temporal variation in population growth.

Conclusions: Populations of this extremely narrow endemic appear stable, with positive growth during our study window. These results suggest that populations of R. austro-oreganus are able to persist if their habitat is not eliminated by land-use change. Nonetheless, its narrow distribution and synchronous population dynamics suggest the need for continued monitoring, particularly with ongoing habitat loss and climate change.

狭长地带特有植物 Ranunculus austro-oreganus 种群动态的时空变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American Journal of Botany
American Journal of Botany 生物-植物科学
CiteScore
4.90
自引率
6.70%
发文量
171
审稿时长
3 months
期刊介绍: The American Journal of Botany (AJB), the flagship journal of the Botanical Society of America (BSA), publishes peer-reviewed, innovative, significant research of interest to a wide audience of plant scientists in all areas of plant biology (structure, function, development, diversity, genetics, evolution, systematics), all levels of organization (molecular to ecosystem), and all plant groups and allied organisms (cyanobacteria, algae, fungi, and lichens). AJB requires authors to frame their research questions and discuss their results in terms of major questions of plant biology. In general, papers that are too narrowly focused, purely descriptive, natural history, broad surveys, or that contain only preliminary data will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信