{"title":"Quantification of multi-pathway metabolites related to folate metabolism and application in natural population with MTHFR C677T polymorphism.","authors":"Mengdie Wang, Qiwen Zheng, Lei You, Huihui Wang, Peilin Jia, Xinyu Liu, Changqing Zeng, Guowang Xu","doi":"10.1007/s00216-024-05688-w","DOIUrl":null,"url":null,"abstract":"<p><p>Folate, serving as a crucial micronutrient, plays an important role in promoting human growth and supporting transformations to a variety of metabolic pathways including one-carbon, pyrimidine, purine, and homocysteine metabolism. The 5,10-methylenetetrahydrofolate reductase (MTHFR) enzyme is pivotal in the folate metabolic pathway. Polymorphism in the MTHFR gene, especially C677T, was associated with decreased enzyme activity and disturbance of folate metabolism, which is linked to various diseases including birth defects in newborns and neural tube abnormalities. However, the detailed metabolic disturbance induced by MTHFR C677T polymorphism is still elusive. In this study, a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the precise quantification of 93 metabolites from six important metabolic pathways related to folate metabolism. The method characteristics demonstrated high accuracy and precision, with r<sup>2</sup> values ranging from 0.981 to 1.000 for all metabolites. Then the impact of the MTHFR C677T polymorphism on folate metabolism was further investigated, revealing a significant reduction in the level of 5-methyltetrahydrofolate and abnormal levels of metabolites associated with DNA synthesis pathways in individuals carrying the mutation. These data highlight the pivotal role of folic acid supplementation for individuals with the MTHFR C677T polymorphism to mitigate health risks and show the value of precision measurement of folate-related metabolites.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05688-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Folate, serving as a crucial micronutrient, plays an important role in promoting human growth and supporting transformations to a variety of metabolic pathways including one-carbon, pyrimidine, purine, and homocysteine metabolism. The 5,10-methylenetetrahydrofolate reductase (MTHFR) enzyme is pivotal in the folate metabolic pathway. Polymorphism in the MTHFR gene, especially C677T, was associated with decreased enzyme activity and disturbance of folate metabolism, which is linked to various diseases including birth defects in newborns and neural tube abnormalities. However, the detailed metabolic disturbance induced by MTHFR C677T polymorphism is still elusive. In this study, a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the precise quantification of 93 metabolites from six important metabolic pathways related to folate metabolism. The method characteristics demonstrated high accuracy and precision, with r2 values ranging from 0.981 to 1.000 for all metabolites. Then the impact of the MTHFR C677T polymorphism on folate metabolism was further investigated, revealing a significant reduction in the level of 5-methyltetrahydrofolate and abnormal levels of metabolites associated with DNA synthesis pathways in individuals carrying the mutation. These data highlight the pivotal role of folic acid supplementation for individuals with the MTHFR C677T polymorphism to mitigate health risks and show the value of precision measurement of folate-related metabolites.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.