Quantification of multi-pathway metabolites related to folate metabolism and application in natural population with MTHFR C677T polymorphism.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Mengdie Wang, Qiwen Zheng, Lei You, Huihui Wang, Peilin Jia, Xinyu Liu, Changqing Zeng, Guowang Xu
{"title":"Quantification of multi-pathway metabolites related to folate metabolism and application in natural population with MTHFR C677T polymorphism.","authors":"Mengdie Wang, Qiwen Zheng, Lei You, Huihui Wang, Peilin Jia, Xinyu Liu, Changqing Zeng, Guowang Xu","doi":"10.1007/s00216-024-05688-w","DOIUrl":null,"url":null,"abstract":"<p><p>Folate, serving as a crucial micronutrient, plays an important role in promoting human growth and supporting transformations to a variety of metabolic pathways including one-carbon, pyrimidine, purine, and homocysteine metabolism. The 5,10-methylenetetrahydrofolate reductase (MTHFR) enzyme is pivotal in the folate metabolic pathway. Polymorphism in the MTHFR gene, especially C677T, was associated with decreased enzyme activity and disturbance of folate metabolism, which is linked to various diseases including birth defects in newborns and neural tube abnormalities. However, the detailed metabolic disturbance induced by MTHFR C677T polymorphism is still elusive. In this study, a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the precise quantification of 93 metabolites from six important metabolic pathways related to folate metabolism. The method characteristics demonstrated high accuracy and precision, with r<sup>2</sup> values ranging from 0.981 to 1.000 for all metabolites. Then the impact of the MTHFR C677T polymorphism on folate metabolism was further investigated, revealing a significant reduction in the level of 5-methyltetrahydrofolate and abnormal levels of metabolites associated with DNA synthesis pathways in individuals carrying the mutation. These data highlight the pivotal role of folic acid supplementation for individuals with the MTHFR C677T polymorphism to mitigate health risks and show the value of precision measurement of folate-related metabolites.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05688-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Folate, serving as a crucial micronutrient, plays an important role in promoting human growth and supporting transformations to a variety of metabolic pathways including one-carbon, pyrimidine, purine, and homocysteine metabolism. The 5,10-methylenetetrahydrofolate reductase (MTHFR) enzyme is pivotal in the folate metabolic pathway. Polymorphism in the MTHFR gene, especially C677T, was associated with decreased enzyme activity and disturbance of folate metabolism, which is linked to various diseases including birth defects in newborns and neural tube abnormalities. However, the detailed metabolic disturbance induced by MTHFR C677T polymorphism is still elusive. In this study, a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the precise quantification of 93 metabolites from six important metabolic pathways related to folate metabolism. The method characteristics demonstrated high accuracy and precision, with r2 values ranging from 0.981 to 1.000 for all metabolites. Then the impact of the MTHFR C677T polymorphism on folate metabolism was further investigated, revealing a significant reduction in the level of 5-methyltetrahydrofolate and abnormal levels of metabolites associated with DNA synthesis pathways in individuals carrying the mutation. These data highlight the pivotal role of folic acid supplementation for individuals with the MTHFR C677T polymorphism to mitigate health risks and show the value of precision measurement of folate-related metabolites.

与叶酸代谢有关的多途径代谢物的定量分析及其在 MTHFR C677T 多态性自然人群中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信