Giovanni Fiorito, Valeria Tosti, Silvia Polidoro, Beatrice Bertozzi, Nicola Veronese, Edda Cava, Francesco Spelta, Laura Piccio, Dayna S Early, Daniel Raftery, Paolo Vineis, Luigi Fontana
{"title":"Multi-omic analysis of biological aging biomarkers in long-term calorie restriction and endurance exercise practitioners: A cross-sectional study.","authors":"Giovanni Fiorito, Valeria Tosti, Silvia Polidoro, Beatrice Bertozzi, Nicola Veronese, Edda Cava, Francesco Spelta, Laura Piccio, Dayna S Early, Daniel Raftery, Paolo Vineis, Luigi Fontana","doi":"10.1111/acel.14442","DOIUrl":null,"url":null,"abstract":"<p><p>Calorie restriction (CR) and physical exercise (EX) are well-established interventions known to extend health span and lifespan in animal models. However, their impact on human biological aging remains unclear. With recent advances in omics technologies and biological age (BioAge) metrics, it is now possible to assess the impact of these lifestyle interventions without the need for long-term follow-up. This study compared BioAge biomarkers in 41 middle-aged and older adult long-term CR practitioners, 41 age- and sex-matched endurance athletes (EX), and 35 sedentary controls consuming Western diets (WD), through PhenoAge: a composite score derived from nine blood-biomarkers. Additionally, a subset of participants (12 CR, 11 EX, and 12 WD) underwent multi-omic profiling, including DNA methylation and RNAseq of colon mucosa, blood metabolomics, and stool metagenomics. A group of six young WD subjects (yWD) served as a reference for BioAge calculation using Mahalanobis distance across six omic layers. The results demonstrated consistently lower BioAge biomarkers in both CR and EX groups compared to WD controls across all layers. CR participants exhibited lower BioAge in gut microbiome and blood-derived omics, while EX participants had lower BioAge in colon mucosa-derived epigenetic and transcriptomic markers, suggesting potential tissue-specific effects. Multi-omic pathway enrichment analyses suggested both shared and intervention-specific mechanisms, including oxidative stress and basal transcription as common pathways, with ether lipid metabolism uniquely enriched in CR. Despite limitations due to sample size, these findings contribute to the broader understanding of the potential anti-aging effects of CR and EX, offering promising directions for further research.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14442"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14442","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Calorie restriction (CR) and physical exercise (EX) are well-established interventions known to extend health span and lifespan in animal models. However, their impact on human biological aging remains unclear. With recent advances in omics technologies and biological age (BioAge) metrics, it is now possible to assess the impact of these lifestyle interventions without the need for long-term follow-up. This study compared BioAge biomarkers in 41 middle-aged and older adult long-term CR practitioners, 41 age- and sex-matched endurance athletes (EX), and 35 sedentary controls consuming Western diets (WD), through PhenoAge: a composite score derived from nine blood-biomarkers. Additionally, a subset of participants (12 CR, 11 EX, and 12 WD) underwent multi-omic profiling, including DNA methylation and RNAseq of colon mucosa, blood metabolomics, and stool metagenomics. A group of six young WD subjects (yWD) served as a reference for BioAge calculation using Mahalanobis distance across six omic layers. The results demonstrated consistently lower BioAge biomarkers in both CR and EX groups compared to WD controls across all layers. CR participants exhibited lower BioAge in gut microbiome and blood-derived omics, while EX participants had lower BioAge in colon mucosa-derived epigenetic and transcriptomic markers, suggesting potential tissue-specific effects. Multi-omic pathway enrichment analyses suggested both shared and intervention-specific mechanisms, including oxidative stress and basal transcription as common pathways, with ether lipid metabolism uniquely enriched in CR. Despite limitations due to sample size, these findings contribute to the broader understanding of the potential anti-aging effects of CR and EX, offering promising directions for further research.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.