{"title":"Establishment of MS LOC platform and its pilot application in clinical lipidomics.","authors":"Xiaoming Chen, Shuo Cao, Liye Tao, Runlan Yan, Sheng Cao, Jingwen Hao, Yuelin Yi, Chunyan Luan, Jianmin Wu, Yue Gao, Xiao Liang","doi":"10.1016/j.talanta.2024.127314","DOIUrl":null,"url":null,"abstract":"<p><p>Lipidomics has demonstrated significant potential for disease diagnosis and prediction. The development and optimization of a robust mass spectrometry (MS) platform for lipidome analysis is critically important, as it can facilitate biomarker discovery, cohort testing, and performance evaluation in clinical lipidomics studies. In this work, we developed a high-throughput and reliable platform, termed MS Lab on a Chip (MS LOC), which integrates the MetArray chip, an automated lipidomics pretreatment protocol, and the reflectron matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) instrument. The MetArray chip, produced through a mass production process, exhibited exceptional stability as an MS substrate. The integration of automated lipid pretreatment and MS detection processes ensures high throughput, stability and efficiency during sample preparation. The analysis of various lipid standards and different types of biological samples enabled comprehensive investigation of lipid features and annotation using the MS LOC. Furthermore, a small cohort study, consisting of hepatocellular carcinoma (HCC) and non-HCC groups, was conducted on this platform, providing preliminary validation of its performance and suggesting that this platform offers a comprehensive protocol for clinical lipidomics testing.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"285 ","pages":"127314"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127314","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lipidomics has demonstrated significant potential for disease diagnosis and prediction. The development and optimization of a robust mass spectrometry (MS) platform for lipidome analysis is critically important, as it can facilitate biomarker discovery, cohort testing, and performance evaluation in clinical lipidomics studies. In this work, we developed a high-throughput and reliable platform, termed MS Lab on a Chip (MS LOC), which integrates the MetArray chip, an automated lipidomics pretreatment protocol, and the reflectron matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) instrument. The MetArray chip, produced through a mass production process, exhibited exceptional stability as an MS substrate. The integration of automated lipid pretreatment and MS detection processes ensures high throughput, stability and efficiency during sample preparation. The analysis of various lipid standards and different types of biological samples enabled comprehensive investigation of lipid features and annotation using the MS LOC. Furthermore, a small cohort study, consisting of hepatocellular carcinoma (HCC) and non-HCC groups, was conducted on this platform, providing preliminary validation of its performance and suggesting that this platform offers a comprehensive protocol for clinical lipidomics testing.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.