Brain-Computer Interfaces Using Flexible Electronics: An a-IGZO Front-End for Active ECoG Electrodes.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kyle van Oosterhout, Ashley Chilundo, Mariana P Branco, Erik J Aarnoutse, Martijn Timmermans, Marco Fattori, Nick F Ramsey, Eugenio Cantatore
{"title":"Brain-Computer Interfaces Using Flexible Electronics: An a-IGZO Front-End for Active ECoG Electrodes.","authors":"Kyle van Oosterhout, Ashley Chilundo, Mariana P Branco, Erik J Aarnoutse, Martijn Timmermans, Marco Fattori, Nick F Ramsey, Eugenio Cantatore","doi":"10.1002/advs.202408576","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-computer interfaces (BCIs) are evolving toward higher electrode count and fully implantable solutions, which require extremely low power densities (<15mW cm<sup>-2</sup>). To achieve this target, and allow for a large and scalable number of channels, flexible electronics can be used as a multiplexing interface. This work introduces an active analog front-end fabricated with amorphous Indium-Gallium-Zinx-Oxide (a-IGZO) Thin-Film Transistors (TFTs) on foil capable of active matrix multiplexing. The circuit achieves only 70nV per sqrt(Hz) input referred noise, consuming 46µW, or 3.5mW cm<sup>-2</sup>. It demonstrates for the first time in literature a flexible front-end with a noise efficiency factor comparable with Silicon solutions (NEF = 9.8), which is more than 10X lower compared to previously reported flexible front-ends. These results have been achieved using a modified bootstrap-load amplifier. The front end is tested by playing through it recordings obtained from a conventional BCI system. A gesture classification based on the flexible front-end outputs achieves 94% accuracy. Using a flexible active front end can improve the state-of-the-art in high channel count BCI systems by lowering the multiplexer noise and enabling larger areas of the brain to be monitored while reducing power density. Therefore, this work enables a new generation of high channel-count active BCI electrode grids.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2408576"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202408576","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Brain-computer interfaces (BCIs) are evolving toward higher electrode count and fully implantable solutions, which require extremely low power densities (<15mW cm-2). To achieve this target, and allow for a large and scalable number of channels, flexible electronics can be used as a multiplexing interface. This work introduces an active analog front-end fabricated with amorphous Indium-Gallium-Zinx-Oxide (a-IGZO) Thin-Film Transistors (TFTs) on foil capable of active matrix multiplexing. The circuit achieves only 70nV per sqrt(Hz) input referred noise, consuming 46µW, or 3.5mW cm-2. It demonstrates for the first time in literature a flexible front-end with a noise efficiency factor comparable with Silicon solutions (NEF = 9.8), which is more than 10X lower compared to previously reported flexible front-ends. These results have been achieved using a modified bootstrap-load amplifier. The front end is tested by playing through it recordings obtained from a conventional BCI system. A gesture classification based on the flexible front-end outputs achieves 94% accuracy. Using a flexible active front end can improve the state-of-the-art in high channel count BCI systems by lowering the multiplexer noise and enabling larger areas of the brain to be monitored while reducing power density. Therefore, this work enables a new generation of high channel-count active BCI electrode grids.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信