Ahmed Alobaida, Amr S Abouzied, A Taslim Ahmed, Bader Huwaimel
{"title":"Potential VEGFR2 inhibitors for managing metastatic cervical cancer: insights from molecular dynamics and free energy landscape studies.","authors":"Ahmed Alobaida, Amr S Abouzied, A Taslim Ahmed, Bader Huwaimel","doi":"10.1007/s11030-024-11080-8","DOIUrl":null,"url":null,"abstract":"<p><p>Metastatic cervical cancer, the advanced stage where the cancer spreads beyond the cervix to other parts of the body, poses significant treatment challenges and is associated with poor survival rates. Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), a critical angiogenic mediator, is upregulated in metastatic cervical cancer, driving the formation of new blood vessels that fuel tumor growth and spread, making it an attractive target for anti-angiogenic therapies aimed at halting metastasis. This study aims to determine the anti-angiogenic effects of natural compounds to identify new VEGFR2 inhibitors for managing metastatic cervical cancer. The potential effect of these compounds as VEGFR2 inhibitors at the structural level was assessed using various methods such as virtual screening, docking, MD simulations (1000 ns), binding free energy calculations, and free energy landscape analysis. Four compounds, including IMPHY007574, IMPHY004129, IMPHY008783, and IMPHY004928, were found to be potential VEGFR2 inhibitors. Among the structures analyzed in the present work, IMPHY007574 revealed the highest binding stability with VEGFR2 and the most favorable interaction pattern, thus proving the possibility of its use as an effective anti-angiogenic compound. The other three compounds also demonstrated a reasonably good promise in VEGFR2 inhibition. These findings provide a foundation for developing novel therapeutic strategies for metastatic cervical cancer, potentially overcoming drug resistance and improving patient survival rates.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11080-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Metastatic cervical cancer, the advanced stage where the cancer spreads beyond the cervix to other parts of the body, poses significant treatment challenges and is associated with poor survival rates. Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), a critical angiogenic mediator, is upregulated in metastatic cervical cancer, driving the formation of new blood vessels that fuel tumor growth and spread, making it an attractive target for anti-angiogenic therapies aimed at halting metastasis. This study aims to determine the anti-angiogenic effects of natural compounds to identify new VEGFR2 inhibitors for managing metastatic cervical cancer. The potential effect of these compounds as VEGFR2 inhibitors at the structural level was assessed using various methods such as virtual screening, docking, MD simulations (1000 ns), binding free energy calculations, and free energy landscape analysis. Four compounds, including IMPHY007574, IMPHY004129, IMPHY008783, and IMPHY004928, were found to be potential VEGFR2 inhibitors. Among the structures analyzed in the present work, IMPHY007574 revealed the highest binding stability with VEGFR2 and the most favorable interaction pattern, thus proving the possibility of its use as an effective anti-angiogenic compound. The other three compounds also demonstrated a reasonably good promise in VEGFR2 inhibition. These findings provide a foundation for developing novel therapeutic strategies for metastatic cervical cancer, potentially overcoming drug resistance and improving patient survival rates.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;