Updates implemented in version 4 of the GlyCosmos Glycoscience Portal.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Sunmyoung Lee, Tamiko Ono, Shiota Masaaki, Akihiro Fujita, Masaaki Matsubara, Achille Zappa, Issaku Yamada, Kiyoko F Aoki-Kinoshita
{"title":"Updates implemented in version 4 of the GlyCosmos Glycoscience Portal.","authors":"Sunmyoung Lee, Tamiko Ono, Shiota Masaaki, Akihiro Fujita, Masaaki Matsubara, Achille Zappa, Issaku Yamada, Kiyoko F Aoki-Kinoshita","doi":"10.1007/s00216-024-05692-0","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosylation, characterized by its complexity and diversity, is a common system across all domains of life. The glycosylation of proteins or lipids imparts them with structural and functional roles, ranging from development to infectious or Mendelian disease. The high-throughput-based omics data has revealed that glycans are involved in important cellular processes. Comprehensive knowledge of glycosylation has contributed not only to the fundamental concepts in glycoscience but also to its applications, including the development of molecular markers for diagnosis and therapeutic tools for treating diseases. The GlyCosmos Glycoscience Portal (GlyCosmos) has undergone significant updates to better support the scientific community in studying glycosylation-related phenomena. Key enhancements include the integration of expanded datasets linking glycans to other omics fields, improved tools for glycan structure prediction and analysis, and upgraded visualization capabilities to streamline data interpretation. A strengthened focus on data standardization has also been introduced, fostering interoperability between glycoscience resources and external databases. Since its release in 2019, the portal has seen a fivefold increase in user engagement, reflecting its growing relevance. These recent advancements aim to provide researchers with a more comprehensive and user-friendly platform, enabling deeper insights into glycan roles in cellular processes and disease mechanisms. GlyCosmos will continue to evolve, prioritizing community needs and advancing the integration of glycoscience with broader biological and biomedical research.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-024-05692-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Glycosylation, characterized by its complexity and diversity, is a common system across all domains of life. The glycosylation of proteins or lipids imparts them with structural and functional roles, ranging from development to infectious or Mendelian disease. The high-throughput-based omics data has revealed that glycans are involved in important cellular processes. Comprehensive knowledge of glycosylation has contributed not only to the fundamental concepts in glycoscience but also to its applications, including the development of molecular markers for diagnosis and therapeutic tools for treating diseases. The GlyCosmos Glycoscience Portal (GlyCosmos) has undergone significant updates to better support the scientific community in studying glycosylation-related phenomena. Key enhancements include the integration of expanded datasets linking glycans to other omics fields, improved tools for glycan structure prediction and analysis, and upgraded visualization capabilities to streamline data interpretation. A strengthened focus on data standardization has also been introduced, fostering interoperability between glycoscience resources and external databases. Since its release in 2019, the portal has seen a fivefold increase in user engagement, reflecting its growing relevance. These recent advancements aim to provide researchers with a more comprehensive and user-friendly platform, enabling deeper insights into glycan roles in cellular processes and disease mechanisms. GlyCosmos will continue to evolve, prioritizing community needs and advancing the integration of glycoscience with broader biological and biomedical research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信