Degradation of levofloxacin by dielectric barrier discharge plasma/chlorine process: Roles of reactive species and control of chlorination disinfection byproducts.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Jing Lou, Hao Han, Jiutao An, Xiangyou Wang
{"title":"Degradation of levofloxacin by dielectric barrier discharge plasma/chlorine process: Roles of reactive species and control of chlorination disinfection byproducts.","authors":"Jing Lou, Hao Han, Jiutao An, Xiangyou Wang","doi":"10.1016/j.jenvman.2024.123727","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a novel process of dielectric barrier discharge (DBD)/chlorine for levofloxacin (LEV) degradation was investigated. The combined system boosted the degradation efficiency of LEV from 77.8% to 97.5%, improved the reaction rate constant by 2.3 times, and reduced energy consumption by 64.5%. DBD/chlorine process was highly efficient for LEV degradation across a pH range of 3.3-10.8, with removal rates varying from 90.3% to 97.5%. The electron paramagnetic resonance and scavenging experiments demonstrated the generation of reactive oxygen species (ROS, including HO•, <sup>1</sup>O<sub>2</sub>, and O<sub>2</sub><sup>•-</sup>) and reactive chlorine species (RCS) in the DBD/chlorine system, with <sup>1</sup>O<sub>2</sub> in the nonradical pathway being crucial for LEV removal. Crucially, effective activation of chlorine not only encouraged the production of reactive species but also prevented the formation of disinfection by-products (DBPs), successfully controlling the ecotoxicity of the reaction system. DBD could activate chlorine to form chlorate and HO•, which in turn triggered the production of RCS. The comparison of the LEV degradation pathway was proposed with or without chlorine in the DBD process. Finally, the effects of different water quality and water bodies demonstrated the application prospects of the DBD/chlorine process. This work provided an efficient technique for the elimination of antibiotics by non-thermal plasma/chlorine.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"373 ","pages":"123727"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.123727","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a novel process of dielectric barrier discharge (DBD)/chlorine for levofloxacin (LEV) degradation was investigated. The combined system boosted the degradation efficiency of LEV from 77.8% to 97.5%, improved the reaction rate constant by 2.3 times, and reduced energy consumption by 64.5%. DBD/chlorine process was highly efficient for LEV degradation across a pH range of 3.3-10.8, with removal rates varying from 90.3% to 97.5%. The electron paramagnetic resonance and scavenging experiments demonstrated the generation of reactive oxygen species (ROS, including HO•, 1O2, and O2•-) and reactive chlorine species (RCS) in the DBD/chlorine system, with 1O2 in the nonradical pathway being crucial for LEV removal. Crucially, effective activation of chlorine not only encouraged the production of reactive species but also prevented the formation of disinfection by-products (DBPs), successfully controlling the ecotoxicity of the reaction system. DBD could activate chlorine to form chlorate and HO•, which in turn triggered the production of RCS. The comparison of the LEV degradation pathway was proposed with or without chlorine in the DBD process. Finally, the effects of different water quality and water bodies demonstrated the application prospects of the DBD/chlorine process. This work provided an efficient technique for the elimination of antibiotics by non-thermal plasma/chlorine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信