Accurate Diagnosis of Lower Respiratory Infections Using Host Response and Respiratory Microbiome from a Single Metatranscriptome Test of Bronchoalveolar Lavage Fluid.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaohui Zou, Mengwei Yan, Yeming Wang, Yawen Ni, Jiankang Zhao, Binghuai Lu, Bo Liu, Bin Cao
{"title":"Accurate Diagnosis of Lower Respiratory Infections Using Host Response and Respiratory Microbiome from a Single Metatranscriptome Test of Bronchoalveolar Lavage Fluid.","authors":"Xiaohui Zou, Mengwei Yan, Yeming Wang, Yawen Ni, Jiankang Zhao, Binghuai Lu, Bo Liu, Bin Cao","doi":"10.1002/advs.202405087","DOIUrl":null,"url":null,"abstract":"<p><p>Lower respiratory tract infections (LRTIs) diagnosis is challenging because noninfectious diseases mimic its clinical features. The altered host response and respiratory microbiome following LRTIs have the potential to differentiate LRTIs from noninfectious respiratory diseases (non-LRTIs). Patients suspected of having LRTIs are retrospectively enrolled and a clinical metatranscriptome test is performed on bronchoalveolar lavage fluid (BALF). Transcriptomic and metagenomic analysis profiled the host response and respiratory microbiome in patients with confirmed LRTI (n = 126) or non-LRTIs (n = 75). Patients with evidenced LRTIs exhibited enhanced pathways on chemokine and cytokine response, neutrophile recruitment and activation, along with specific gene modules linked to LRTIs status and key blood markers. Moreover, LRTIs patients exhibited reduced diversity and evenness in the lower respiratory microbiome, likely driven by an increased abundance of bacterial pathogens. Host marker genes are selected, and classifiers are developed to distinguish patients with LRTIs, non-LRTIs, and indeterminate status, achieving an area under the receiver operating characteristic curve of 0.80 to 0.86 and validated in a subsequently enrolled cohort. Incorporating respiratory microbiome features further enhanced the classifier's performance. In summary, a single metatranscriptome test of BALF proved detailed profiles of host response and respiratory microbiome, enabling accurate LRTIs diagnosis.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2405087"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202405087","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lower respiratory tract infections (LRTIs) diagnosis is challenging because noninfectious diseases mimic its clinical features. The altered host response and respiratory microbiome following LRTIs have the potential to differentiate LRTIs from noninfectious respiratory diseases (non-LRTIs). Patients suspected of having LRTIs are retrospectively enrolled and a clinical metatranscriptome test is performed on bronchoalveolar lavage fluid (BALF). Transcriptomic and metagenomic analysis profiled the host response and respiratory microbiome in patients with confirmed LRTI (n = 126) or non-LRTIs (n = 75). Patients with evidenced LRTIs exhibited enhanced pathways on chemokine and cytokine response, neutrophile recruitment and activation, along with specific gene modules linked to LRTIs status and key blood markers. Moreover, LRTIs patients exhibited reduced diversity and evenness in the lower respiratory microbiome, likely driven by an increased abundance of bacterial pathogens. Host marker genes are selected, and classifiers are developed to distinguish patients with LRTIs, non-LRTIs, and indeterminate status, achieving an area under the receiver operating characteristic curve of 0.80 to 0.86 and validated in a subsequently enrolled cohort. Incorporating respiratory microbiome features further enhanced the classifier's performance. In summary, a single metatranscriptome test of BALF proved detailed profiles of host response and respiratory microbiome, enabling accurate LRTIs diagnosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信