Accurate Diagnosis of Lower Respiratory Infections Using Host Response and Respiratory Microbiome from a Single Metatranscriptome Test of Bronchoalveolar Lavage Fluid.
Xiaohui Zou, Mengwei Yan, Yeming Wang, Yawen Ni, Jiankang Zhao, Binghuai Lu, Bo Liu, Bin Cao
{"title":"Accurate Diagnosis of Lower Respiratory Infections Using Host Response and Respiratory Microbiome from a Single Metatranscriptome Test of Bronchoalveolar Lavage Fluid.","authors":"Xiaohui Zou, Mengwei Yan, Yeming Wang, Yawen Ni, Jiankang Zhao, Binghuai Lu, Bo Liu, Bin Cao","doi":"10.1002/advs.202405087","DOIUrl":null,"url":null,"abstract":"<p><p>Lower respiratory tract infections (LRTIs) diagnosis is challenging because noninfectious diseases mimic its clinical features. The altered host response and respiratory microbiome following LRTIs have the potential to differentiate LRTIs from noninfectious respiratory diseases (non-LRTIs). Patients suspected of having LRTIs are retrospectively enrolled and a clinical metatranscriptome test is performed on bronchoalveolar lavage fluid (BALF). Transcriptomic and metagenomic analysis profiled the host response and respiratory microbiome in patients with confirmed LRTI (n = 126) or non-LRTIs (n = 75). Patients with evidenced LRTIs exhibited enhanced pathways on chemokine and cytokine response, neutrophile recruitment and activation, along with specific gene modules linked to LRTIs status and key blood markers. Moreover, LRTIs patients exhibited reduced diversity and evenness in the lower respiratory microbiome, likely driven by an increased abundance of bacterial pathogens. Host marker genes are selected, and classifiers are developed to distinguish patients with LRTIs, non-LRTIs, and indeterminate status, achieving an area under the receiver operating characteristic curve of 0.80 to 0.86 and validated in a subsequently enrolled cohort. Incorporating respiratory microbiome features further enhanced the classifier's performance. In summary, a single metatranscriptome test of BALF proved detailed profiles of host response and respiratory microbiome, enabling accurate LRTIs diagnosis.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2405087"},"PeriodicalIF":14.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202405087","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lower respiratory tract infections (LRTIs) diagnosis is challenging because noninfectious diseases mimic its clinical features. The altered host response and respiratory microbiome following LRTIs have the potential to differentiate LRTIs from noninfectious respiratory diseases (non-LRTIs). Patients suspected of having LRTIs are retrospectively enrolled and a clinical metatranscriptome test is performed on bronchoalveolar lavage fluid (BALF). Transcriptomic and metagenomic analysis profiled the host response and respiratory microbiome in patients with confirmed LRTI (n = 126) or non-LRTIs (n = 75). Patients with evidenced LRTIs exhibited enhanced pathways on chemokine and cytokine response, neutrophile recruitment and activation, along with specific gene modules linked to LRTIs status and key blood markers. Moreover, LRTIs patients exhibited reduced diversity and evenness in the lower respiratory microbiome, likely driven by an increased abundance of bacterial pathogens. Host marker genes are selected, and classifiers are developed to distinguish patients with LRTIs, non-LRTIs, and indeterminate status, achieving an area under the receiver operating characteristic curve of 0.80 to 0.86 and validated in a subsequently enrolled cohort. Incorporating respiratory microbiome features further enhanced the classifier's performance. In summary, a single metatranscriptome test of BALF proved detailed profiles of host response and respiratory microbiome, enabling accurate LRTIs diagnosis.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.