Redox-activatable inhalable mucoadhesive proteinic nanotherapeutics for targeted treatment of lung cancer.

IF 12.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Biomaterials Pub Date : 2025-05-01 Epub Date: 2024-12-09 DOI:10.1016/j.biomaterials.2024.123004
Yeonsu Jeong, Yun Seop Shim, Yun Kee Jo, Hyung Joon Cha
{"title":"Redox-activatable inhalable mucoadhesive proteinic nanotherapeutics for targeted treatment of lung cancer.","authors":"Yeonsu Jeong, Yun Seop Shim, Yun Kee Jo, Hyung Joon Cha","doi":"10.1016/j.biomaterials.2024.123004","DOIUrl":null,"url":null,"abstract":"<p><p>Inhalation delivery has been considered a promising choice for treating lung cancer because it can shuttle therapeutic payloads directly to cancer tissues via simple and noninvasive procedures while reducing systemic toxicity. However, its clinical application still faces challenges, especially for delivering hydrophobic chemotherapeutic drugs, due to poor absorption on mucosal tissues and limited therapeutic performance. Herein, we propose inhalable mucoadhesive proteinic nanoparticles (NPs) capable of facilitating reliable pulmonary drug delivery and redox-responsive anticancer therapeutic effects to realize noninvasive, localized treatment of lung cancer in a highly biocompatible, site-specific manner. Thiolated mussel adhesive protein (MAP)-based NPs (thMAP NPs) can be administered to target tissues via an easy and facile nebulization process due to their superior MAP-driven adhesion ability and sufficient structural integrity. Curcumin (Cur)-loaded thMAP NPs (thMAP@Cur NPs) demonstrated efficient cellular uptake through the thiol-mediated pathway and controlled the intracellular release of Cur in response to the reductive environment in cancer cells. The nebulized thMAP@Cur NPs elicited prolonged retention in lung tissue without causing any detectable adverse effects, leading to significant inhibition of metastatic lung cancer in vivo. Thus, these protein-based redox-responsive mucoadhesive NPs hold great promise as robust inhalable drug delivery platforms to achieve effective, localized treatment of pulmonary cancer and other respiratory diseases.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"316 ","pages":"123004"},"PeriodicalIF":12.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2024.123004","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inhalation delivery has been considered a promising choice for treating lung cancer because it can shuttle therapeutic payloads directly to cancer tissues via simple and noninvasive procedures while reducing systemic toxicity. However, its clinical application still faces challenges, especially for delivering hydrophobic chemotherapeutic drugs, due to poor absorption on mucosal tissues and limited therapeutic performance. Herein, we propose inhalable mucoadhesive proteinic nanoparticles (NPs) capable of facilitating reliable pulmonary drug delivery and redox-responsive anticancer therapeutic effects to realize noninvasive, localized treatment of lung cancer in a highly biocompatible, site-specific manner. Thiolated mussel adhesive protein (MAP)-based NPs (thMAP NPs) can be administered to target tissues via an easy and facile nebulization process due to their superior MAP-driven adhesion ability and sufficient structural integrity. Curcumin (Cur)-loaded thMAP NPs (thMAP@Cur NPs) demonstrated efficient cellular uptake through the thiol-mediated pathway and controlled the intracellular release of Cur in response to the reductive environment in cancer cells. The nebulized thMAP@Cur NPs elicited prolonged retention in lung tissue without causing any detectable adverse effects, leading to significant inhibition of metastatic lung cancer in vivo. Thus, these protein-based redox-responsive mucoadhesive NPs hold great promise as robust inhalable drug delivery platforms to achieve effective, localized treatment of pulmonary cancer and other respiratory diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信