{"title":"Modeling the spatiotemporal distribution, bioaccumulation, and ecological risk assessment of microplastics in aquatic ecosystems: A review.","authors":"Tianyu Zhuo, Beibei Chai, Xue-Yi You","doi":"10.1016/j.aquatox.2024.107210","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastic (MP) pollution poses a significant threat to aquatic ecosystems. Numerical modeling has emerged as an effective tool for predicting the distribution, accumulation, and risk assessment of MPs in aquatic ecosystems. However, published work has not systematically assessed the strengths and weaknesses of various modeling approaches. Therefore, we conducted a thorough review of the main modeling approaches for MPs over the past six years. We classified the approaches into three categories as: spatial and temporal distribution, bioaccumulation, and systematic ecological risk assessment. The review analyzed application scenarios, modeling methods, and the advantages and disadvantages of models. The results indicate that the accurate simulation of MPs spatial and temporal distribution requires reasonable parameterization and comprehensive transport considerations. Meanwhile, it is important to focus on coupling process models with other types of models. To enhance risk assessment models, expanding the relevant evaluation indicators is essential.</p>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"107210"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.aquatox.2024.107210","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastic (MP) pollution poses a significant threat to aquatic ecosystems. Numerical modeling has emerged as an effective tool for predicting the distribution, accumulation, and risk assessment of MPs in aquatic ecosystems. However, published work has not systematically assessed the strengths and weaknesses of various modeling approaches. Therefore, we conducted a thorough review of the main modeling approaches for MPs over the past six years. We classified the approaches into three categories as: spatial and temporal distribution, bioaccumulation, and systematic ecological risk assessment. The review analyzed application scenarios, modeling methods, and the advantages and disadvantages of models. The results indicate that the accurate simulation of MPs spatial and temporal distribution requires reasonable parameterization and comprehensive transport considerations. Meanwhile, it is important to focus on coupling process models with other types of models. To enhance risk assessment models, expanding the relevant evaluation indicators is essential.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.