Tong Zhang, Melanie Berghaus, Yuan Li, Qingmei Song, Maria M Stollenwerk, Jenny Persson, Kenneth J Shea, Börje Sellergren, Yongqin Lv
{"title":"PSMA-Targeting Imprinted Nanogels for Prostate Tumor Localization and Imaging.","authors":"Tong Zhang, Melanie Berghaus, Yuan Li, Qingmei Song, Maria M Stollenwerk, Jenny Persson, Kenneth J Shea, Börje Sellergren, Yongqin Lv","doi":"10.1002/adhm.202401929","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer cells and tumor vasculature, making it an important biomarker. However, conventional PSMA-targeting agents like antibodies and small molecules have limitations. Antibodies exhibit instability and complex production, while small molecules show lower specificity and higher toxicity. Herein, this work develops a novel PSMA-targeting synthetic antibody to address prior limitations. This work synthesizes fluorescently labelled, N-isopropylacrylamide-based epitope imprinted nanogels (MIP-M) using a dispersion of magnetic nanoparticles as template carriers with a linear epitope from PSMA's extracellular apical domain as the template. MIP-M demonstrates high binding affinities for both the epitope template (apparent K<sub>D</sub> = 6 × 10<sup>-10</sup> м) and PSMA (apparent K<sub>D</sub> = 2.5 × 10<sup>-9</sup> м). Compared to reference peptides and human serum albumin, MIP-M indicates high specificity. Flow cytometry and confocal laser scanning microscopy comparing cell lines displaying normal (PC3) and enhanced (LNCaP) PSMA expression levels, revealed that MIP-M and a PSMA antibody exhibits comparable binding preferences for the latter cell line. Moreover, MIP-M demonstrates selectivity on par with the PSMA antibody for targeting PSMA-positive prostate tumor over normal tissue, enabling discrimination. This MIP-M addresses stability, production, specificity and toxicity limitations of prior targeting agents and offer a promising alternative for PSMA-directed cancer diagnosis and treatment.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2401929"},"PeriodicalIF":10.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202401929","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer cells and tumor vasculature, making it an important biomarker. However, conventional PSMA-targeting agents like antibodies and small molecules have limitations. Antibodies exhibit instability and complex production, while small molecules show lower specificity and higher toxicity. Herein, this work develops a novel PSMA-targeting synthetic antibody to address prior limitations. This work synthesizes fluorescently labelled, N-isopropylacrylamide-based epitope imprinted nanogels (MIP-M) using a dispersion of magnetic nanoparticles as template carriers with a linear epitope from PSMA's extracellular apical domain as the template. MIP-M demonstrates high binding affinities for both the epitope template (apparent KD = 6 × 10-10 м) and PSMA (apparent KD = 2.5 × 10-9 м). Compared to reference peptides and human serum albumin, MIP-M indicates high specificity. Flow cytometry and confocal laser scanning microscopy comparing cell lines displaying normal (PC3) and enhanced (LNCaP) PSMA expression levels, revealed that MIP-M and a PSMA antibody exhibits comparable binding preferences for the latter cell line. Moreover, MIP-M demonstrates selectivity on par with the PSMA antibody for targeting PSMA-positive prostate tumor over normal tissue, enabling discrimination. This MIP-M addresses stability, production, specificity and toxicity limitations of prior targeting agents and offer a promising alternative for PSMA-directed cancer diagnosis and treatment.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.