WRKY1-Mediated Interconversion of MeSA and SA in Neighbouring Apple Plants Enhances Defence Against Powdery Mildew.

IF 6 1区 生物学 Q1 PLANT SCIENCES
Liming Lan, Lulu Zhang, Lifang Cao, Sanhong Wang
{"title":"WRKY1-Mediated Interconversion of MeSA and SA in Neighbouring Apple Plants Enhances Defence Against Powdery Mildew.","authors":"Liming Lan, Lulu Zhang, Lifang Cao, Sanhong Wang","doi":"10.1111/pce.15323","DOIUrl":null,"url":null,"abstract":"<p><p>Powdery mildew (PM), caused by the biotrophic fungus Podospharea leucotricha, is a major threat to apple production. Plant-plant communication (PPC) is a crucial strategy for plant communities to enhance their defence against pathogens. The interconversion of methyl salicylate (MeSA) and salicylic acid (SA) is critical for PPC regulation, but the mechanism of MeSA-mediated PPC is not fully understood. This study reveals a significant increase in SA and MeSA levels in neighbouring plants (receivers) following PM attack on emitter plants, activating defence responses in receivers. Notably, the expression of WRKY1, a previously characterized transcription factor, was upregulated in receivers, implicating its role in defence response modulation. WRKY1 was found to promote SA accumulation and enhance PM resistance in receivers. Importantly, WRKY1 positively regulates the expression of SABP2a, which catalysers MeSA to SA conversion, and negatively regulates SAMT1a, which functions in the reverse reaction. Consequently, WRKY1 facilitates the conversion of MeSA to SA in receivers, preventing its reversion and sustaining elevated SA levels. Collectively, our findings clarify the role of WRKY1 in enhancing the defence response to PM in receivers.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15323","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Powdery mildew (PM), caused by the biotrophic fungus Podospharea leucotricha, is a major threat to apple production. Plant-plant communication (PPC) is a crucial strategy for plant communities to enhance their defence against pathogens. The interconversion of methyl salicylate (MeSA) and salicylic acid (SA) is critical for PPC regulation, but the mechanism of MeSA-mediated PPC is not fully understood. This study reveals a significant increase in SA and MeSA levels in neighbouring plants (receivers) following PM attack on emitter plants, activating defence responses in receivers. Notably, the expression of WRKY1, a previously characterized transcription factor, was upregulated in receivers, implicating its role in defence response modulation. WRKY1 was found to promote SA accumulation and enhance PM resistance in receivers. Importantly, WRKY1 positively regulates the expression of SABP2a, which catalysers MeSA to SA conversion, and negatively regulates SAMT1a, which functions in the reverse reaction. Consequently, WRKY1 facilitates the conversion of MeSA to SA in receivers, preventing its reversion and sustaining elevated SA levels. Collectively, our findings clarify the role of WRKY1 in enhancing the defence response to PM in receivers.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信