Localized surface plasmon resonance sensing based on monometallic gold nanoparticles: from material preparation to detection of bioanalytes.

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Peng Zhang, Huizhen Hou, Songshi Xu, Yingfei Wen, Yonghui Zhang, Fei Xing
{"title":"Localized surface plasmon resonance sensing based on monometallic gold nanoparticles: from material preparation to detection of bioanalytes.","authors":"Peng Zhang, Huizhen Hou, Songshi Xu, Yingfei Wen, Yonghui Zhang, Fei Xing","doi":"10.1039/d4ay01509f","DOIUrl":null,"url":null,"abstract":"<p><p>The tunable geometrical properties of gold nanoparticles (AuNPs) endow them with the capacity to exhibit distinct behaviors with respect to both macroscopic (color) and microscopic (resonance wavelength) aspects, which has been extensively utilized in localized surface plasmon resonance (LSPR) sensing platforms. Additionally, functionalizing AuNP surfaces enhances the platforms' capabilities, allowing for the detection of a wide range of molecules related to various aspects of human health. In this review, we comprehensively elucidate the fundamental principles of LSPR biosensing and provide an in-depth survey of the preparation processes for metal nanoparticles, encompassing deposition technology for large-scale particle production as well as ion reduction methods that afford superior control over the particles' physical and chemical attributes. The sensing strategies based on adjustment of the dielectric environment and particle dispersion-aggregation levels are thoroughly reviewed and discussed. The discussion focused on a specific class of nanoparticles, characterized by their uniform shape and size, with each section bifurcated into two parts: a summary of the salient features and recent discoveries pertaining to the sensing strategy, as well as illustrations of representative, cutting-edge applications employing the strategy. We specifically aim to scrutinize analytes commonly encountered in the biomedical realm, encompassing biomarkers that serve as indicators of a wide range of diseases and microbial pathogens, while also prognosticating the future development trends of LSPR optical biosensor platforms within the biomedical field.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay01509f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The tunable geometrical properties of gold nanoparticles (AuNPs) endow them with the capacity to exhibit distinct behaviors with respect to both macroscopic (color) and microscopic (resonance wavelength) aspects, which has been extensively utilized in localized surface plasmon resonance (LSPR) sensing platforms. Additionally, functionalizing AuNP surfaces enhances the platforms' capabilities, allowing for the detection of a wide range of molecules related to various aspects of human health. In this review, we comprehensively elucidate the fundamental principles of LSPR biosensing and provide an in-depth survey of the preparation processes for metal nanoparticles, encompassing deposition technology for large-scale particle production as well as ion reduction methods that afford superior control over the particles' physical and chemical attributes. The sensing strategies based on adjustment of the dielectric environment and particle dispersion-aggregation levels are thoroughly reviewed and discussed. The discussion focused on a specific class of nanoparticles, characterized by their uniform shape and size, with each section bifurcated into two parts: a summary of the salient features and recent discoveries pertaining to the sensing strategy, as well as illustrations of representative, cutting-edge applications employing the strategy. We specifically aim to scrutinize analytes commonly encountered in the biomedical realm, encompassing biomarkers that serve as indicators of a wide range of diseases and microbial pathogens, while also prognosticating the future development trends of LSPR optical biosensor platforms within the biomedical field.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信