An electrochemical sensor based on electrodeposited methylene blue on a carbon nanotube decorated hydrogel for the detection of ascorbic acid.

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL
Linghui Tang, Yufeng Huang, Zhihuan Qian, Jifan Zhao, Yasushi Hasebe, Yan Dong, Yue Wang
{"title":"An electrochemical sensor based on electrodeposited methylene blue on a carbon nanotube decorated hydrogel for the detection of ascorbic acid.","authors":"Linghui Tang, Yufeng Huang, Zhihuan Qian, Jifan Zhao, Yasushi Hasebe, Yan Dong, Yue Wang","doi":"10.1039/d4ay01827c","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a self-assembled electrochemical sensor was prepared by coating with a carbon nanotube (CNT) decorated hydrogel (HG) combined with electrodeposition of methylene blue (MB), and then used for the detection of ascorbic acid (AA). The three-dimensional network of HG has the advantages of large electroactive surface area, rapid diffusion and electron transfer rate, strong adhesive ability and stabilization of the polymerized MB. The MB provides high electrocatalytic activity and works as an electron transfer mediator to facilitate the oxidation of AA. The successful synthesis of the hydrogel and the preparation of the sensor are confirmed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The layer-by-layer assembly was identified by AFM with the heights of 22.1 nm and 186.8 nm for the hydrogel and MB layers, respectively. Under the optimal conditions, the sensor has a linear range of 0.1 mM to 10 mM and a detection limit of 0.05 mM. What's more, the prepared sensor also exhibits good stability (current retention of 91.22% after 100 cycles for testing 0.25 mM AA), excellent anti-interference ability, good reproducibility (RSD of 4.26% for five independent experiments), excellent operational stability (RSD of 1.66% for 30 consecutive AA additions), fast response time (<4 s) and shows satisfactory results in the detection of AA in vitamin C tablets.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay01827c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a self-assembled electrochemical sensor was prepared by coating with a carbon nanotube (CNT) decorated hydrogel (HG) combined with electrodeposition of methylene blue (MB), and then used for the detection of ascorbic acid (AA). The three-dimensional network of HG has the advantages of large electroactive surface area, rapid diffusion and electron transfer rate, strong adhesive ability and stabilization of the polymerized MB. The MB provides high electrocatalytic activity and works as an electron transfer mediator to facilitate the oxidation of AA. The successful synthesis of the hydrogel and the preparation of the sensor are confirmed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The layer-by-layer assembly was identified by AFM with the heights of 22.1 nm and 186.8 nm for the hydrogel and MB layers, respectively. Under the optimal conditions, the sensor has a linear range of 0.1 mM to 10 mM and a detection limit of 0.05 mM. What's more, the prepared sensor also exhibits good stability (current retention of 91.22% after 100 cycles for testing 0.25 mM AA), excellent anti-interference ability, good reproducibility (RSD of 4.26% for five independent experiments), excellent operational stability (RSD of 1.66% for 30 consecutive AA additions), fast response time (<4 s) and shows satisfactory results in the detection of AA in vitamin C tablets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Methods
Analytical Methods CHEMISTRY, ANALYTICAL-FOOD SCIENCE & TECHNOLOGY
CiteScore
5.10
自引率
3.20%
发文量
569
审稿时长
1.8 months
期刊介绍: Early applied demonstrations of new analytical methods with clear societal impact
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信