Md Nasir Uddin, Md Abu Monsur Dinar, Leah E Schrass, Daniel W Pack, Jason E DeRouchey
{"title":"Impact of Acetylation, Succinylation, and pH on DNA Packaging in PEI-Based Polyplexes.","authors":"Md Nasir Uddin, Md Abu Monsur Dinar, Leah E Schrass, Daniel W Pack, Jason E DeRouchey","doi":"10.1021/acs.biomac.4c00648","DOIUrl":null,"url":null,"abstract":"<p><p>Polyethylenimine (PEI) is a widely used cationic polymer for nonviral gene delivery, often modified to enhance transfection efficiency and reduce cytotoxicity. This study investigates how acetylation, succinylation (acPEI and zPEI), and pH influence the internal DNA packaging of polyplexes. Both modifications alter physicochemical properties, leading to complexes that decondense more readily with increasing modification. X-ray scattering reveals that high acetylation produces loosely packed DNA, while succinylation unexpectedly tightens DNA packing at higher modification levels. Polyplexes formed at low pH (pH 4) are more stable and tightly packed than those formed at pH 7.5. Acidifying polyplexes initially formed at pH 7.5 induces structural rearrangement to tighter DNA packing accompanied by significant PEI release, providing direct evidence for models where free PEI aids endosomal escape. These findings challenge conventional assumptions about PEI behavior and offer new insights into DNA packaging, emphasizing tailored polymer modifications and pH conditions to optimize gene delivery.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00648","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polyethylenimine (PEI) is a widely used cationic polymer for nonviral gene delivery, often modified to enhance transfection efficiency and reduce cytotoxicity. This study investigates how acetylation, succinylation (acPEI and zPEI), and pH influence the internal DNA packaging of polyplexes. Both modifications alter physicochemical properties, leading to complexes that decondense more readily with increasing modification. X-ray scattering reveals that high acetylation produces loosely packed DNA, while succinylation unexpectedly tightens DNA packing at higher modification levels. Polyplexes formed at low pH (pH 4) are more stable and tightly packed than those formed at pH 7.5. Acidifying polyplexes initially formed at pH 7.5 induces structural rearrangement to tighter DNA packing accompanied by significant PEI release, providing direct evidence for models where free PEI aids endosomal escape. These findings challenge conventional assumptions about PEI behavior and offer new insights into DNA packaging, emphasizing tailored polymer modifications and pH conditions to optimize gene delivery.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.