Karolina Knittelova, Eliska Prchalova, Adela Fuchsova, Rudolf Andrys, Zuzana Kohoutova, Sara Rademacherova, Lukas Prchal, Kamil Musilek, David Malinak
{"title":"Synthesis and Evaluation of Halogenated Pralidoximes in Reactivation of Organophosphate-Inhibited Cholinesterases.","authors":"Karolina Knittelova, Eliska Prchalova, Adela Fuchsova, Rudolf Andrys, Zuzana Kohoutova, Sara Rademacherova, Lukas Prchal, Kamil Musilek, David Malinak","doi":"10.1021/acsmedchemlett.4c00464","DOIUrl":null,"url":null,"abstract":"<p><p>Organophosphorus compounds are highly toxic irreversible inhibitors of cholinesterases, causing the disruption of cholinergic functions. Treatment of poisoning includes causal antidotes (oximes) used as reactivators of inhibited cholinesterases, such as pralidoxime. In this work, new halogenated oxime reactivators derived from pralidoxime were developed. The oximes were designed with a halogen substituent that lowers the p<i>K</i> <sub>a</sub> and enhances oximate formation. Their synthesis, stability, physicochemical properties, inhibition of native cholinesterases, and <i>in vitro</i> reactivation of organophosphate-inhibited cholinesterases were investigated. A series of C4 and C6 halogenated oximes showed instability and their degradation products were identified, while C3 and C5 oximes exhibited sufficient stability for the evaluation. C3 oximes displayed overall low inhibition of cholinesterases and high reactivation ability of organophosphate-inhibited cholinesterases compared to pralidoxime, indicating the significant impact of halogen substitution on reactivation ability.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"15 12","pages":"2181-2189"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647715/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsmedchemlett.4c00464","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Organophosphorus compounds are highly toxic irreversible inhibitors of cholinesterases, causing the disruption of cholinergic functions. Treatment of poisoning includes causal antidotes (oximes) used as reactivators of inhibited cholinesterases, such as pralidoxime. In this work, new halogenated oxime reactivators derived from pralidoxime were developed. The oximes were designed with a halogen substituent that lowers the pKa and enhances oximate formation. Their synthesis, stability, physicochemical properties, inhibition of native cholinesterases, and in vitro reactivation of organophosphate-inhibited cholinesterases were investigated. A series of C4 and C6 halogenated oximes showed instability and their degradation products were identified, while C3 and C5 oximes exhibited sufficient stability for the evaluation. C3 oximes displayed overall low inhibition of cholinesterases and high reactivation ability of organophosphate-inhibited cholinesterases compared to pralidoxime, indicating the significant impact of halogen substitution on reactivation ability.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.