A robust pyrazolate metal–organic framework for integrated perfluorooctanoic acid concentration and degradation

Rong-Ran Liang, Yubin Fu, Zongsu Han, Yihao Yang, Vladimir I. Bakhmutov, Zhaoyi Liu, Joshua Rushlow, Hong-Cai Zhou
{"title":"A robust pyrazolate metal–organic framework for integrated perfluorooctanoic acid concentration and degradation","authors":"Rong-Ran Liang, Yubin Fu, Zongsu Han, Yihao Yang, Vladimir I. Bakhmutov, Zhaoyi Liu, Joshua Rushlow, Hong-Cai Zhou","doi":"10.1038/s44221-024-00343-1","DOIUrl":null,"url":null,"abstract":"Perfluorooctanoic acid (PFOA) poses a substantial threat to human health due to its bioaccumulation and carcinogenic nature. Current remediation strategies typically focus on either adsorption or degradation, neglecting the potential of an integrated approach. Herein, we present a pyrazolate metal–organic framework (MOF), PCN-1003, featuring a lamellar structure with one-dimensional open channels. PCN-1003 exhibits exceptional stability across a wide pH range (1–12) in aqueous solutions, achieving efficient PFOA adsorption (642 mg g−1). Mechanistic studies revealed that a PFOA–acetate exchange process dominates, representing a remarkable example of such a mechanism and enabling efficient PFOA uptake. Notably, PCN-1003 greatly facilitates PFOA degradation at a much lower temperature (90 °C) than observed in previously reported methods, with an approximately threefold catalytic acceleration effect, attributed to the coordination of PFOA and the confined environment within PCN-1003. This study pioneers integrated PFOA concentration and degradation using a single MOF, presenting a promising avenue for treating water contaminated with per- and polyfluoroalkyl substances. A robust pyrazolate metal–organic framework acts as both an adsorbent for perfluorooctanoic acid and a catalyst for degradation under mild conditions, providing an integrated approach for the capture and destruction of per- and polyfluoroalkyl substances.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 12","pages":"1218-1225"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-024-00343-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Perfluorooctanoic acid (PFOA) poses a substantial threat to human health due to its bioaccumulation and carcinogenic nature. Current remediation strategies typically focus on either adsorption or degradation, neglecting the potential of an integrated approach. Herein, we present a pyrazolate metal–organic framework (MOF), PCN-1003, featuring a lamellar structure with one-dimensional open channels. PCN-1003 exhibits exceptional stability across a wide pH range (1–12) in aqueous solutions, achieving efficient PFOA adsorption (642 mg g−1). Mechanistic studies revealed that a PFOA–acetate exchange process dominates, representing a remarkable example of such a mechanism and enabling efficient PFOA uptake. Notably, PCN-1003 greatly facilitates PFOA degradation at a much lower temperature (90 °C) than observed in previously reported methods, with an approximately threefold catalytic acceleration effect, attributed to the coordination of PFOA and the confined environment within PCN-1003. This study pioneers integrated PFOA concentration and degradation using a single MOF, presenting a promising avenue for treating water contaminated with per- and polyfluoroalkyl substances. A robust pyrazolate metal–organic framework acts as both an adsorbent for perfluorooctanoic acid and a catalyst for degradation under mild conditions, providing an integrated approach for the capture and destruction of per- and polyfluoroalkyl substances.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信