Airborne observations of fast-evolving ocean submesoscale turbulence

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Hector S. Torres, Ernesto Rodriguez, Alexander Wineteer, Patrice Klein, Andrew F. Thompson, Jörn Callies, Eric D’Asaro, Dragana Perkovic-Martin, J. Thomas Farrar, Federica Polverari, Ruzbeh Akbar
{"title":"Airborne observations of fast-evolving ocean submesoscale turbulence","authors":"Hector S. Torres, Ernesto Rodriguez, Alexander Wineteer, Patrice Klein, Andrew F. Thompson, Jörn Callies, Eric D’Asaro, Dragana Perkovic-Martin, J. Thomas Farrar, Federica Polverari, Ruzbeh Akbar","doi":"10.1038/s43247-024-01917-3","DOIUrl":null,"url":null,"abstract":"Ocean images collected by astronauts onboard the Apollo spacecraft more than 50 years ago revealed a large number of ocean eddies, with a size between 1 and 20 km. Since then, satellite infrared, ocean color, sun glitter and synthetic aperture radar images, with high spatial resolution, have confirmed the ubiquitous presence of these small eddies in all oceans. However, observing the dynamical characteristics and evolution of these eddies has remained challenging. An experiment was recently carried out in the California Current system using the new airborne Doppler Scatterometer (National Aeronautics and Space Administration-Jet Propulsion Laboratory DopplerScatt) instrument that observes surface velocities. Here, with DopplerScatt, we mapped a 30 × 100 km domain over multiple days to unveil numerous 1–20 km ocean eddies, called submesoscale eddies, that evolve over a period of a few hours. The strong interactions between eddies generate horizontal velocity divergence, implying vertical velocities reaching 250 m day−1 at 40 m depth. The velocity field also produces horizontal dispersion of particles over a distance of 50 km within 12 h, which rapidly fills the turbulent eddy field. These observations suggest that submesoscale ocean turbulence may profoundly affect the vertical transport of heat, carbon, and important climatic gases between the atmosphere and the ocean interior, as well as the horizontal dispersion of tracers and particles. As such, submesoscale ocean eddies are a critical element of Earth’s climate system. Submesoscale eddies in the upper ocean play a critical role in the vertical transport and dispersion of ocean properties, including heat, nutrients, and carbon, making them essential for regulating the Earth’s climate system, according to results from the new airborne Doppler Scatterometer.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-10"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01917-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01917-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ocean images collected by astronauts onboard the Apollo spacecraft more than 50 years ago revealed a large number of ocean eddies, with a size between 1 and 20 km. Since then, satellite infrared, ocean color, sun glitter and synthetic aperture radar images, with high spatial resolution, have confirmed the ubiquitous presence of these small eddies in all oceans. However, observing the dynamical characteristics and evolution of these eddies has remained challenging. An experiment was recently carried out in the California Current system using the new airborne Doppler Scatterometer (National Aeronautics and Space Administration-Jet Propulsion Laboratory DopplerScatt) instrument that observes surface velocities. Here, with DopplerScatt, we mapped a 30 × 100 km domain over multiple days to unveil numerous 1–20 km ocean eddies, called submesoscale eddies, that evolve over a period of a few hours. The strong interactions between eddies generate horizontal velocity divergence, implying vertical velocities reaching 250 m day−1 at 40 m depth. The velocity field also produces horizontal dispersion of particles over a distance of 50 km within 12 h, which rapidly fills the turbulent eddy field. These observations suggest that submesoscale ocean turbulence may profoundly affect the vertical transport of heat, carbon, and important climatic gases between the atmosphere and the ocean interior, as well as the horizontal dispersion of tracers and particles. As such, submesoscale ocean eddies are a critical element of Earth’s climate system. Submesoscale eddies in the upper ocean play a critical role in the vertical transport and dispersion of ocean properties, including heat, nutrients, and carbon, making them essential for regulating the Earth’s climate system, according to results from the new airborne Doppler Scatterometer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信