Xia Zhang, Bo Huang, Nariê Rinke Dias de Souza, Xiangping Hu, Francesco Cherubini
{"title":"Regional cooling potential from expansion of perennial grasses in Europe","authors":"Xia Zhang, Bo Huang, Nariê Rinke Dias de Souza, Xiangping Hu, Francesco Cherubini","doi":"10.1038/s43247-024-01923-5","DOIUrl":null,"url":null,"abstract":"Perennial grasses are an option to mitigate global warming, increase energy security, and alleviate environmental pressures within agricultural landscapes. Their cultivation alters near-surface temperature in ways that are still largely unclear. Here, a regional climate model with an enhanced representation of perennial grasses shows that converting today’s cropland areas in Europe induces annual mean temperature reductions in summer and autumn (up to –1 °C), which are primarily driven by a later harvest of perennial grasses relative to annual crops. Cultivation of perennial grasses where they deliver stronger biogeophysical cooling can achieve a similar annual mean temperature reduction on half of the land. This cooling can counteract up to 50% of the projected future warming and it is three times larger than what is achieved via carbon emission reductions. A sustainable deployment of perennial grasses has the potential to link global mitigation objectives with co-benefits for the local climate and environment. In Europe, converting today’s cropland areas into perennial grasses, such as switchgrass, reduces annual mean temperatures in summer and autumn, according to an analysis that uses a regional climate model and life cycle assessment.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-16"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01923-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01923-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Perennial grasses are an option to mitigate global warming, increase energy security, and alleviate environmental pressures within agricultural landscapes. Their cultivation alters near-surface temperature in ways that are still largely unclear. Here, a regional climate model with an enhanced representation of perennial grasses shows that converting today’s cropland areas in Europe induces annual mean temperature reductions in summer and autumn (up to –1 °C), which are primarily driven by a later harvest of perennial grasses relative to annual crops. Cultivation of perennial grasses where they deliver stronger biogeophysical cooling can achieve a similar annual mean temperature reduction on half of the land. This cooling can counteract up to 50% of the projected future warming and it is three times larger than what is achieved via carbon emission reductions. A sustainable deployment of perennial grasses has the potential to link global mitigation objectives with co-benefits for the local climate and environment. In Europe, converting today’s cropland areas into perennial grasses, such as switchgrass, reduces annual mean temperatures in summer and autumn, according to an analysis that uses a regional climate model and life cycle assessment.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.