Trimodal thermal energy storage material for renewable energy applications

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2024-12-18 DOI:10.1038/s41586-024-08214-1
Saliha Saher, Sam Johnston, Ratu Esther-Kelvin, Jennifer M. Pringle, Douglas R. MacFarlane, Karolina Matuszek
{"title":"Trimodal thermal energy storage material for renewable energy applications","authors":"Saliha Saher, Sam Johnston, Ratu Esther-Kelvin, Jennifer M. Pringle, Douglas R. MacFarlane, Karolina Matuszek","doi":"10.1038/s41586-024-08214-1","DOIUrl":null,"url":null,"abstract":"The global aim to move away from fossil fuels requires efficient, inexpensive and sustainable energy storage to fully use renewable energy sources. Thermal energy storage materials1,2 in combination with a Carnot battery3–5 could revolutionize the energy storage sector. However, a lack of stable, inexpensive and energy-dense thermal energy storage materials impedes the advancement of this technology. Here we report the first, to our knowledge, ‘trimodal’ material that synergistically stores large amounts of thermal energy by integrating three distinct energy storage modes—latent, thermochemical and sensible. The eutectic mixture of boric and succinic acids undergoes a transition at around 150 °C, with a record high reversible thermal energy uptake of 394 ± 5% J g−1. We show that the transition involves melting of the boric acid component, which simultaneously undergoes dehydration into metaboric acid and water that dissolve into the liquid. Being retained in the liquid state allows the metaboric acid to readily rehydrate to re-form boric acid on cooling. Thermal stability is demonstrated over 1,000 heating–cooling cycles. The material is very low cost, environmentally friendly and sustainable. This combination of a solid–liquid phase transition and a chemical reaction demonstrated here opens new pathways in the development of high energy capacity materials. A eutectic phase change material composed of boric and succinic acids demonstrates a transition at around 150 °C, with a record high reversible thermal energy uptake and thermal stability over 1,000 heating–cooling cycles.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"636 8043","pages":"622-626"},"PeriodicalIF":50.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-024-08214-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08214-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The global aim to move away from fossil fuels requires efficient, inexpensive and sustainable energy storage to fully use renewable energy sources. Thermal energy storage materials1,2 in combination with a Carnot battery3–5 could revolutionize the energy storage sector. However, a lack of stable, inexpensive and energy-dense thermal energy storage materials impedes the advancement of this technology. Here we report the first, to our knowledge, ‘trimodal’ material that synergistically stores large amounts of thermal energy by integrating three distinct energy storage modes—latent, thermochemical and sensible. The eutectic mixture of boric and succinic acids undergoes a transition at around 150 °C, with a record high reversible thermal energy uptake of 394 ± 5% J g−1. We show that the transition involves melting of the boric acid component, which simultaneously undergoes dehydration into metaboric acid and water that dissolve into the liquid. Being retained in the liquid state allows the metaboric acid to readily rehydrate to re-form boric acid on cooling. Thermal stability is demonstrated over 1,000 heating–cooling cycles. The material is very low cost, environmentally friendly and sustainable. This combination of a solid–liquid phase transition and a chemical reaction demonstrated here opens new pathways in the development of high energy capacity materials. A eutectic phase change material composed of boric and succinic acids demonstrates a transition at around 150 °C, with a record high reversible thermal energy uptake and thermal stability over 1,000 heating–cooling cycles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信