Zhaoling Li, Lu Sun, Runsen Zhang, Tatsuya Hanaoka
{"title":"Decarbonization pathways promote improvements in cement quality and reduce the environmental impact of China’s cement industry","authors":"Zhaoling Li, Lu Sun, Runsen Zhang, Tatsuya Hanaoka","doi":"10.1038/s43247-024-01929-z","DOIUrl":null,"url":null,"abstract":"The cement industry plays a key role in emission reduction efforts, but cement quality is rarely considered in low-carbon development analyses. Here we design three cement quality transformation routes in response to China’s cement quality improvement program and analyse the corresponding low-carbon development pathways via a bottom-up integrated assessment model. Results show that cement quality improvements trigger a 14.6% increase in energy consumption and emissions in business-as-usual scenarios in 2060. Compared with the base year, raising the environmental taxes to 46.8 Chinese Yuan per equivalent unit saves up to 75.1% of carbon dioxide emissions and 25.0% of fuel consumption from the high-quality-cement scenario by 2060. Carbon capture and storage contributes up to 77% of the emission reduction. The reduction in cement demand conserves 17.3% more energy than the high-cement-demand scenario does in 2060. Collaborative waste treatment is expected to replace 22.4% of fuel consumption in the cement industry in 2060. In China, under the high cement quality scenario, the increase of environmental taxes is projected to reduce carbon dioxide emissions and fuel consumption in the cement industry by 2060, according to an analysis that uses an integrated assessment model with the flow of energy and materials.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-12"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01929-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01929-z","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The cement industry plays a key role in emission reduction efforts, but cement quality is rarely considered in low-carbon development analyses. Here we design three cement quality transformation routes in response to China’s cement quality improvement program and analyse the corresponding low-carbon development pathways via a bottom-up integrated assessment model. Results show that cement quality improvements trigger a 14.6% increase in energy consumption and emissions in business-as-usual scenarios in 2060. Compared with the base year, raising the environmental taxes to 46.8 Chinese Yuan per equivalent unit saves up to 75.1% of carbon dioxide emissions and 25.0% of fuel consumption from the high-quality-cement scenario by 2060. Carbon capture and storage contributes up to 77% of the emission reduction. The reduction in cement demand conserves 17.3% more energy than the high-cement-demand scenario does in 2060. Collaborative waste treatment is expected to replace 22.4% of fuel consumption in the cement industry in 2060. In China, under the high cement quality scenario, the increase of environmental taxes is projected to reduce carbon dioxide emissions and fuel consumption in the cement industry by 2060, according to an analysis that uses an integrated assessment model with the flow of energy and materials.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.