Jiajun Ren, Anugraha Mathew, María Rodríguez-García, Tobias Kohler, Olivier Blacque, Anthony Linden, Leo Eberl, Simon Sieber, Karl Gademann
{"title":"Functional biosynthetic stereodivergence in a gene cluster via a dihydrosydnone N-oxide","authors":"Jiajun Ren, Anugraha Mathew, María Rodríguez-García, Tobias Kohler, Olivier Blacque, Anthony Linden, Leo Eberl, Simon Sieber, Karl Gademann","doi":"10.1038/s42004-024-01372-3","DOIUrl":null,"url":null,"abstract":"Chirality plays a critical role in the biochemistry of life and often only one enantiomeric series is observed (homochirality). Only a few natural products have been obtained as racemates, e.g. the signalling molecule valdiazen produced by Burkholderia cenocepacia H111. In this study, we investigated the ham biosynthetic gene cluster and discovered that both the enantiomerically pure (R)-fragin and the racemic valdiazen result from the same pathway. This stereodivergence is based on the unusual heterocyclic intermediate dihydrosydnone N-oxide, as evident from gene knockout, stable isotope feeding experiments, and mass spectrometry experiments. Both non-enzymatic racemisation via keto-enol tautomerisation and enzyme-mediated dynamic kinetic resolution were found to be crucial to this stereodivergent pathway. This novel mechanism underpins the production of configurationally and biologically distinct metabolites from a single gene cluster. Our findings highlight the intricate design of an intertwined biosynthetic pathway and provide a deeper understanding of microbial secondary metabolism related to microbial communication. The ham gene cluster in Burkholderia cenocepacia H111 produces two compounds: the signalling molecule valdiazen as racemate and the antifungal fragin in enantiopure form. Here, the authors demonstrate that the stereodivergence is based on the heterocyclic intermediate dihydrosydnone N-oxide, with both non-enzymatic racemization and enzyme-mediated dynamic kinetic resolution occurring in parallel.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-9"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01372-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01372-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chirality plays a critical role in the biochemistry of life and often only one enantiomeric series is observed (homochirality). Only a few natural products have been obtained as racemates, e.g. the signalling molecule valdiazen produced by Burkholderia cenocepacia H111. In this study, we investigated the ham biosynthetic gene cluster and discovered that both the enantiomerically pure (R)-fragin and the racemic valdiazen result from the same pathway. This stereodivergence is based on the unusual heterocyclic intermediate dihydrosydnone N-oxide, as evident from gene knockout, stable isotope feeding experiments, and mass spectrometry experiments. Both non-enzymatic racemisation via keto-enol tautomerisation and enzyme-mediated dynamic kinetic resolution were found to be crucial to this stereodivergent pathway. This novel mechanism underpins the production of configurationally and biologically distinct metabolites from a single gene cluster. Our findings highlight the intricate design of an intertwined biosynthetic pathway and provide a deeper understanding of microbial secondary metabolism related to microbial communication. The ham gene cluster in Burkholderia cenocepacia H111 produces two compounds: the signalling molecule valdiazen as racemate and the antifungal fragin in enantiopure form. Here, the authors demonstrate that the stereodivergence is based on the heterocyclic intermediate dihydrosydnone N-oxide, with both non-enzymatic racemization and enzyme-mediated dynamic kinetic resolution occurring in parallel.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.