Three-dimensional bonding anisotropy of bulk hexagonal metal titanium demonstrated by high harmonic generation

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Ikufumi Katayama, Kento Uchida, Kimika Takashina, Akari Kishioka, Misa Kaiho, Satoshi Kusaba, Ryo Tamaki, Ken-ichi Shudo, Masahiro Kitajima, Thien Duc Ngo, Tadaaki Nagao, Jun Takeda, Koichiro Tanaka, Tetsuya Matsunaga
{"title":"Three-dimensional bonding anisotropy of bulk hexagonal metal titanium demonstrated by high harmonic generation","authors":"Ikufumi Katayama, Kento Uchida, Kimika Takashina, Akari Kishioka, Misa Kaiho, Satoshi Kusaba, Ryo Tamaki, Ken-ichi Shudo, Masahiro Kitajima, Thien Duc Ngo, Tadaaki Nagao, Jun Takeda, Koichiro Tanaka, Tetsuya Matsunaga","doi":"10.1038/s42005-024-01906-0","DOIUrl":null,"url":null,"abstract":"High harmonic generation (HHG) in solid-state materials is an emerging field of photonics research that can unveil the detailed electronic structure of materials, bond strengths and scattering processes of electrons. Although HHG in semiconducting and insulating materials has been intensively investigated both experimentally and theoretically, metals have rarely been explored because the strong screening effect of high-density free electrons is considered to significantly weaken the HHG signal. Here, we investigated HHG upon infrared excitation in bulk hexagonal metal titanium (Ti), a typical building block for practical lightweight structural materials. By analyzing the polarization dependence, the approach revealed the three-dimensional (3D) anisotropy in the electronic states. The results demonstrated the potential of HHG spectroscopy for characterizing 3D bonding anisotropy in metallic systems that are of fundamental importance for designing lightweight and strong structural materials. High harmonics generation (HHG) is a promising way of investigating electronic structures and anisotropy in materials. The authors demonstrate the observation of HHG in simple structural material, hexagonal metal titanium, and experimentally clarified the anisotropy in the electronic states from the polarization dependence.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-7"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01906-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01906-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High harmonic generation (HHG) in solid-state materials is an emerging field of photonics research that can unveil the detailed electronic structure of materials, bond strengths and scattering processes of electrons. Although HHG in semiconducting and insulating materials has been intensively investigated both experimentally and theoretically, metals have rarely been explored because the strong screening effect of high-density free electrons is considered to significantly weaken the HHG signal. Here, we investigated HHG upon infrared excitation in bulk hexagonal metal titanium (Ti), a typical building block for practical lightweight structural materials. By analyzing the polarization dependence, the approach revealed the three-dimensional (3D) anisotropy in the electronic states. The results demonstrated the potential of HHG spectroscopy for characterizing 3D bonding anisotropy in metallic systems that are of fundamental importance for designing lightweight and strong structural materials. High harmonics generation (HHG) is a promising way of investigating electronic structures and anisotropy in materials. The authors demonstrate the observation of HHG in simple structural material, hexagonal metal titanium, and experimentally clarified the anisotropy in the electronic states from the polarization dependence.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信