Jixiang Jing, Fuqiang Sun, Zhongqiang Wang, Linjie Ma, Yumeng Luo, Zhiyuan Du, Tianyu Zhang, Yicheng Wang, Feng Xu, Tongtong Zhang, Changsheng Chen, Xuhang Ma, Yang He, Ye Zhu, Huarui Sun, Xinqiang Wang, Yan Zhou, James Kit Hon Tsoi, Jörg Wrachtrup, Ngai Wong, Can Li, Dong-Keun Ki, Qi Wang, Kwai Hei Li, Yuan Lin, Zhiqin Chu
{"title":"Scalable production of ultraflat and ultraflexible diamond membrane","authors":"Jixiang Jing, Fuqiang Sun, Zhongqiang Wang, Linjie Ma, Yumeng Luo, Zhiyuan Du, Tianyu Zhang, Yicheng Wang, Feng Xu, Tongtong Zhang, Changsheng Chen, Xuhang Ma, Yang He, Ye Zhu, Huarui Sun, Xinqiang Wang, Yan Zhou, James Kit Hon Tsoi, Jörg Wrachtrup, Ngai Wong, Can Li, Dong-Keun Ki, Qi Wang, Kwai Hei Li, Yuan Lin, Zhiqin Chu","doi":"10.1038/s41586-024-08218-x","DOIUrl":null,"url":null,"abstract":"Diamond is an exceptional material with great potential across various fields owing to its interesting properties1,2. However, despite extensive efforts over the past decades3–5, producing large quantities of desired ultrathin diamond membranes for widespread use remains challenging. Here we demonstrate that edge-exposed exfoliation using sticky tape is a simple, scalable and reliable method for producing ultrathin and transferable polycrystalline diamond membranes. Our approach enables the mass production of large-area (2-inch wafer), ultrathin (sub-micrometre thickness), ultraflat (sub-nano surface roughness) and ultraflexible (360° bendable) diamond membranes. These high-quality membranes, which have a flat workable surface, support standard micromanufacturing techniques, and their ultraflexible nature allows for direct elastic strain engineering and deformation sensing applications, which is not possible with their bulky counterpart. Systematic experimental and theoretical studies reveal that the quality of the exfoliated membranes depends on the peeling angle and membrane thickness, for which largely intact diamond membranes can be robustly produced within an optimal operation window. This single-step method, which opens up new avenues for the mass production of high-figure-of-merit diamond membranes, is expected to accelerate the commercialization and arrival of the diamond era in electronics, photonics and other related fields. Edge-exposed exfoliation using sticky tape is shown to be a simple and reliable method for scaling up the production of ultrathin, ultraflat and ultraflexible polycrystalline diamond membranes for diverse electrical, optical, mechanical, thermal, acoustic and quantum applications.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"636 8043","pages":"627-634"},"PeriodicalIF":50.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-024-08218-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-024-08218-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Diamond is an exceptional material with great potential across various fields owing to its interesting properties1,2. However, despite extensive efforts over the past decades3–5, producing large quantities of desired ultrathin diamond membranes for widespread use remains challenging. Here we demonstrate that edge-exposed exfoliation using sticky tape is a simple, scalable and reliable method for producing ultrathin and transferable polycrystalline diamond membranes. Our approach enables the mass production of large-area (2-inch wafer), ultrathin (sub-micrometre thickness), ultraflat (sub-nano surface roughness) and ultraflexible (360° bendable) diamond membranes. These high-quality membranes, which have a flat workable surface, support standard micromanufacturing techniques, and their ultraflexible nature allows for direct elastic strain engineering and deformation sensing applications, which is not possible with their bulky counterpart. Systematic experimental and theoretical studies reveal that the quality of the exfoliated membranes depends on the peeling angle and membrane thickness, for which largely intact diamond membranes can be robustly produced within an optimal operation window. This single-step method, which opens up new avenues for the mass production of high-figure-of-merit diamond membranes, is expected to accelerate the commercialization and arrival of the diamond era in electronics, photonics and other related fields. Edge-exposed exfoliation using sticky tape is shown to be a simple and reliable method for scaling up the production of ultrathin, ultraflat and ultraflexible polycrystalline diamond membranes for diverse electrical, optical, mechanical, thermal, acoustic and quantum applications.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.