One-step conversion of biomass to reduced graphene oxide at room temperature

IF 25.7 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Duan-Chao Wang, Jin-Ze Lv, Shenjie Zhong, Yuhang Wu, Yang Liu, Sheng-Nan Lei, Hou-Yong Yu, Liangti Qu, J. Fraser Stoddart, Qing-Hui Guo
{"title":"One-step conversion of biomass to reduced graphene oxide at room temperature","authors":"Duan-Chao Wang, Jin-Ze Lv, Shenjie Zhong, Yuhang Wu, Yang Liu, Sheng-Nan Lei, Hou-Yong Yu, Liangti Qu, J. Fraser Stoddart, Qing-Hui Guo","doi":"10.1038/s41893-024-01480-x","DOIUrl":null,"url":null,"abstract":"Although graphene and graphene-related two-dimensional materials (GR2Ms) hold much potential for various applications, the current methods for their large-scale production rely heavily on graphite minerals and energy-intensive techniques. Here we report a one-step dehydration–condensation method for the economical and green preparation of GR2Ms on a gram scale from biomass at room temperature under atmospheric pressure using only concentrated sulfuric acid. This protocol has been applied successfully to various types of biomass and carbohydrates, delivering a 33% mass yield of GR2M product. The properties of the product are consistent with those of classical reduced graphene oxide (RGO), with the twist that it does not need to be produced from graphite minerals. The mild reaction conditions substantially reduce the energy input, while providing a facile platform for monitoring the kinetics of RGO nucleation and growth. Compared with conventional methods, a 98% reduction in energy consumption is achieved. Overall, the results of this research pave a new avenue to scalable and sustainable GR2M production. Reduced graphene oxide materials are of great interest in many fields, but current production methods are neither sustainable nor scalable. Here the authors report a method that enables the facile production of reduced graphene oxide from biomass at ambient temperature.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"7 12","pages":"1699-1708"},"PeriodicalIF":25.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01480-x","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Although graphene and graphene-related two-dimensional materials (GR2Ms) hold much potential for various applications, the current methods for their large-scale production rely heavily on graphite minerals and energy-intensive techniques. Here we report a one-step dehydration–condensation method for the economical and green preparation of GR2Ms on a gram scale from biomass at room temperature under atmospheric pressure using only concentrated sulfuric acid. This protocol has been applied successfully to various types of biomass and carbohydrates, delivering a 33% mass yield of GR2M product. The properties of the product are consistent with those of classical reduced graphene oxide (RGO), with the twist that it does not need to be produced from graphite minerals. The mild reaction conditions substantially reduce the energy input, while providing a facile platform for monitoring the kinetics of RGO nucleation and growth. Compared with conventional methods, a 98% reduction in energy consumption is achieved. Overall, the results of this research pave a new avenue to scalable and sustainable GR2M production. Reduced graphene oxide materials are of great interest in many fields, but current production methods are neither sustainable nor scalable. Here the authors report a method that enables the facile production of reduced graphene oxide from biomass at ambient temperature.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Sustainability
Nature Sustainability Energy-Renewable Energy, Sustainability and the Environment
CiteScore
41.90
自引率
1.10%
发文量
159
期刊介绍: Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions. Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信