Lei Huang, R. Iestyn Woolway, Axel Timmermann, Keith B. Rodgers
{"title":"Projected phenological shifts in stratification and overturning of ice-covered Northern Hemisphere lakes","authors":"Lei Huang, R. Iestyn Woolway, Axel Timmermann, Keith B. Rodgers","doi":"10.1038/s43247-024-01953-z","DOIUrl":null,"url":null,"abstract":"The seasonal cycle of vertical mixing is crucial for lake ecosystems, yet its future under climate change remains uncertain. While lake stratification shifts have been widely studied, the annual overturning duration changes are less clear. Using sub-daily simulations from a fully coupled numerical Earth system model, we assess phenological changes in stratification and overturning in Northern Hemisphere ice-covered lakes. We find the total stratification duration (comprising both summer and winter phases) is projected to decrease by 0.7, 4.6, and 6.9 days in 2029, 2067, and 2096, respectively, under global temperature increases of 1.5 °C, 3 °C, and 4.5 °C. Conversely, the duration of overturning is expected to increase by 0.7, 4.2, and 8 days annually. Notably, these changes are asymmetrical, with most of the overturning extension occurring in the fall, following the peak growing season. This extended overturning could affect lake ecosystems, particularly through enhanced ventilation of bottom layers and altered nutrient cycling. Rising global temperatures of 1.5 °C, 3 °C, and 4.5 °C will shorten stratification by 0.7, 4.6, and 6.9 days, and lengthen overturning by 0.7, 4.2, and 8 days annually by 2096 in the Northern Hemisphere, affecting lake ecosystems through altered ventilation and nutrient cycling, according to sub-daily simulations of ice-covered lakes.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-10"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01953-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01953-z","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The seasonal cycle of vertical mixing is crucial for lake ecosystems, yet its future under climate change remains uncertain. While lake stratification shifts have been widely studied, the annual overturning duration changes are less clear. Using sub-daily simulations from a fully coupled numerical Earth system model, we assess phenological changes in stratification and overturning in Northern Hemisphere ice-covered lakes. We find the total stratification duration (comprising both summer and winter phases) is projected to decrease by 0.7, 4.6, and 6.9 days in 2029, 2067, and 2096, respectively, under global temperature increases of 1.5 °C, 3 °C, and 4.5 °C. Conversely, the duration of overturning is expected to increase by 0.7, 4.2, and 8 days annually. Notably, these changes are asymmetrical, with most of the overturning extension occurring in the fall, following the peak growing season. This extended overturning could affect lake ecosystems, particularly through enhanced ventilation of bottom layers and altered nutrient cycling. Rising global temperatures of 1.5 °C, 3 °C, and 4.5 °C will shorten stratification by 0.7, 4.6, and 6.9 days, and lengthen overturning by 0.7, 4.2, and 8 days annually by 2096 in the Northern Hemisphere, affecting lake ecosystems through altered ventilation and nutrient cycling, according to sub-daily simulations of ice-covered lakes.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.