{"title":"MiTopos","authors":"Bernd Schmeikal","doi":"10.1007/s00006-024-01362-7","DOIUrl":null,"url":null,"abstract":"<div><p>In the present article, the research work of many years is summarized in an interim report. This concerns the connection between logic, space, time and matter. The author always had in mind two things, namely 1. The discovery/construction of an interface between matter and mind, and 2. some entry points for the topos view that concern graphs, grade rotations and contravariant involutions in geometric Boolean lattices. In this part of the MiTopos theme I follow the historic approach to mathematical physics and remain with the Clifford algebra of the Minkowski space. It turns out that this interface is a basic morphogenetic structure inherent in both matter and thought. It resides in both oriented spaces and logic, and most surprisingly is closely linked to the symmetries of elementary particle physics.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"35 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01362-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In the present article, the research work of many years is summarized in an interim report. This concerns the connection between logic, space, time and matter. The author always had in mind two things, namely 1. The discovery/construction of an interface between matter and mind, and 2. some entry points for the topos view that concern graphs, grade rotations and contravariant involutions in geometric Boolean lattices. In this part of the MiTopos theme I follow the historic approach to mathematical physics and remain with the Clifford algebra of the Minkowski space. It turns out that this interface is a basic morphogenetic structure inherent in both matter and thought. It resides in both oriented spaces and logic, and most surprisingly is closely linked to the symmetries of elementary particle physics.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.