Investigation of Effects of Vibrations on Nanofluid-Filled Pulsating Heat Pipe for Efficient Electric Vehicle Battery Thermal Management

IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL
Nikhil S. Mane, Vadiraj Hemadri, Siddhartha Tripathi
{"title":"Investigation of Effects of Vibrations on Nanofluid-Filled Pulsating Heat Pipe for Efficient Electric Vehicle Battery Thermal Management","authors":"Nikhil S. Mane,&nbsp;Vadiraj Hemadri,&nbsp;Siddhartha Tripathi","doi":"10.1007/s10765-024-03477-2","DOIUrl":null,"url":null,"abstract":"<div><p>Pulsating heat pipes are effective heat transfer devices that can provide passive thermal management solutions for electronics and electric vehicle batteries. In this work, the thermal performance and startup characteristics of a specially designed multiplanar PHP are investigated. Hybrid CuO + Fe<sub>3</sub>O<sub>4</sub>-water (2 wt. %) nanofluid is used as the working fluid in pulsating heat pipes. The improvement in cooling performance is assessed and compared to that of water. In mobile applications of PHPs like electric vehicle battery thermal management, components are regularly exposed to the vibrations induced by vehicle systems, and hence working characteristics of PHP under vibrations need a detailed investigation. Hence, this work also explores the effect of vibrations (~ 30 Hz) on the thermal performance of pulsating heat pipe to study its feasibility for electric vehicle battery thermal management application. The findings of this work show that with nanofluids, the startup temperature of pulsating heat pipe reduces marginally, and thermal resistance decreases by a maximum of 13.49%. Results also show that under vibrations, pulsating heat pipe shows significantly low startup temperature and reduced thermal resistance. A maximum decrease in thermal resistance under vibrations is observed at 45° pulsating heat pipe inclination; it is 11.40% for water and 8.05% for nanofluid. Also, a regression analysis is conducted to formulate a correlation to predict the thermal resistance of pulsating heat pipes based on different input parameters. The mean absolute percentage deviation (MAPD) between the predicted and experimental data is observed as 4.67% for the correlation based on current study data.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03477-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pulsating heat pipes are effective heat transfer devices that can provide passive thermal management solutions for electronics and electric vehicle batteries. In this work, the thermal performance and startup characteristics of a specially designed multiplanar PHP are investigated. Hybrid CuO + Fe3O4-water (2 wt. %) nanofluid is used as the working fluid in pulsating heat pipes. The improvement in cooling performance is assessed and compared to that of water. In mobile applications of PHPs like electric vehicle battery thermal management, components are regularly exposed to the vibrations induced by vehicle systems, and hence working characteristics of PHP under vibrations need a detailed investigation. Hence, this work also explores the effect of vibrations (~ 30 Hz) on the thermal performance of pulsating heat pipe to study its feasibility for electric vehicle battery thermal management application. The findings of this work show that with nanofluids, the startup temperature of pulsating heat pipe reduces marginally, and thermal resistance decreases by a maximum of 13.49%. Results also show that under vibrations, pulsating heat pipe shows significantly low startup temperature and reduced thermal resistance. A maximum decrease in thermal resistance under vibrations is observed at 45° pulsating heat pipe inclination; it is 11.40% for water and 8.05% for nanofluid. Also, a regression analysis is conducted to formulate a correlation to predict the thermal resistance of pulsating heat pipes based on different input parameters. The mean absolute percentage deviation (MAPD) between the predicted and experimental data is observed as 4.67% for the correlation based on current study data.

Abstract Image

振动对高效电动汽车电池热管理纳米流体脉动热管影响的研究
脉动热管是一种有效的传热装置,可以为电子产品和电动汽车电池提供被动热管理解决方案。本文研究了一种特殊设计的多平面PHP的热性能和启动特性。采用CuO + fe3o4 -水(2 wt. %)混合纳米流体作为脉动热管工作流体。对冷却性能的改进进行了评估,并与水的性能进行了比较。在电动汽车电池热管理等PHP移动应用中,组件经常暴露在车辆系统引起的振动中,因此需要详细研究PHP在振动下的工作特性。因此,本工作还探讨了振动(~ 30 Hz)对脉动热管热性能的影响,以研究其在电动汽车电池热管理应用的可行性。研究结果表明,加入纳米流体后,脉动热管的启动温度略有降低,热阻最大降低了13.49%。振动作用下,脉动热管的启动温度明显降低,热阻明显减小。在脉动热管倾角为45°时,热阻减小幅度最大;水为11.40%,纳米流体为8.05%。并进行了回归分析,建立了基于不同输入参数的脉动热管热阻预测的相关性。根据目前的研究数据,预测数据与实验数据的平均绝对百分比偏差(MAPD)为4.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信