{"title":"AtGATA5 acts as a novel regulator in secondary cell wall biosynthesis by modulating NAC-domain transcription factors in Arabidopsis thaliana","authors":"Byeonggyu Kim, Kihwan Kim, Won-Chan Kim","doi":"10.1186/s13765-024-00966-8","DOIUrl":null,"url":null,"abstract":"<div><p>The plant cell wall is composed of a primary and secondary cell wall. The secondary cell wall (SCW) plays a crucial role in the movement of nutrients and water and serves as a barrier against pathogens and environmental stresses. However, the biosynthesis of the SCW is complex, involving a network of genes regulated by environmental factors, including light. In this study, we investigated the nuclear localization of AtGATA5 to determine its potential role as a transcription factor and its involvement in SCW formation. To explore changes in leaf phenotypes in overexpression <i>AtGATA5</i> and the thickening of interfascicular fiber cells, we conducted a transient activity assay using Arabidopsis protoplasts. The results demonstrated that <i>AtGATA5</i> can up-regulate NAC-domain transcription factors, which are master regulators of the SCW biosynthesis pathway. Furthermore, gene expression analysis in plants confirmed that as <i>AtGATA5</i> expression increased, the expression levels of NAC-domain transcription factors also increased. These findings suggest that <i>AtGATA5</i> plays a functional role in SCW formation by up-regulating master regulators in the SCW biosynthesis pathway. Overall, <i>AtGATA5</i> may act as a novel regulator of SCW biosynthesis, offering insights into potential application.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00966-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-024-00966-8","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The plant cell wall is composed of a primary and secondary cell wall. The secondary cell wall (SCW) plays a crucial role in the movement of nutrients and water and serves as a barrier against pathogens and environmental stresses. However, the biosynthesis of the SCW is complex, involving a network of genes regulated by environmental factors, including light. In this study, we investigated the nuclear localization of AtGATA5 to determine its potential role as a transcription factor and its involvement in SCW formation. To explore changes in leaf phenotypes in overexpression AtGATA5 and the thickening of interfascicular fiber cells, we conducted a transient activity assay using Arabidopsis protoplasts. The results demonstrated that AtGATA5 can up-regulate NAC-domain transcription factors, which are master regulators of the SCW biosynthesis pathway. Furthermore, gene expression analysis in plants confirmed that as AtGATA5 expression increased, the expression levels of NAC-domain transcription factors also increased. These findings suggest that AtGATA5 plays a functional role in SCW formation by up-regulating master regulators in the SCW biosynthesis pathway. Overall, AtGATA5 may act as a novel regulator of SCW biosynthesis, offering insights into potential application.
期刊介绍:
Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.