A. I. Ivanova, D. O. Vakhrushev, O. S. Korneva, A. V. Gurulev, V. A. Varlachev, D. D. Efimov, A. A. Chernyshev
{"title":"Investigation of High-Intensity Implantation of Titanium Ions into Silicon under Conditions of Beam Energy Impact on the Surface","authors":"A. I. Ivanova, D. O. Vakhrushev, O. S. Korneva, A. V. Gurulev, V. A. Varlachev, D. D. Efimov, A. A. Chernyshev","doi":"10.1134/S1027451024701040","DOIUrl":null,"url":null,"abstract":"<p>Methods of modifying surface and near-surface layers of materials and coatings by ion beams can be applied in many fields of science and technology. To practically implement the technologies for the targeted improvement of the performance properties of parts and products for various purposes, it is of great interest to develop the methods of deep ion doping of near-surface layers of semiconductor materials, as well as metals and alloys due to the enhancement of radiation-stimulated diffusion under conditions when the irradiated sample deep layers are not subject to a significant temperature impact. This study concerns features and regularities of implementing the synergy of high-intensity titanium ion implantation at current densities of several hundred mA/cm<sup>2</sup> with simultaneous energy impact of a submillisecond ion beam with a power density reaching several tens of kW/cm<sup>2</sup> on the surface. This work is the first to show that the synergy of high-intensity ion implantation and the energy impact of a high-power density ion beam, taking titanium implantation into silicon as an example, provides the possibility of increasing the ion doping depth from fractions of μm to 6 μm by increasing the irradiation time from 0.5 to 60 min.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"18 5","pages":"1216 - 1220"},"PeriodicalIF":0.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451024701040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Methods of modifying surface and near-surface layers of materials and coatings by ion beams can be applied in many fields of science and technology. To practically implement the technologies for the targeted improvement of the performance properties of parts and products for various purposes, it is of great interest to develop the methods of deep ion doping of near-surface layers of semiconductor materials, as well as metals and alloys due to the enhancement of radiation-stimulated diffusion under conditions when the irradiated sample deep layers are not subject to a significant temperature impact. This study concerns features and regularities of implementing the synergy of high-intensity titanium ion implantation at current densities of several hundred mA/cm2 with simultaneous energy impact of a submillisecond ion beam with a power density reaching several tens of kW/cm2 on the surface. This work is the first to show that the synergy of high-intensity ion implantation and the energy impact of a high-power density ion beam, taking titanium implantation into silicon as an example, provides the possibility of increasing the ion doping depth from fractions of μm to 6 μm by increasing the irradiation time from 0.5 to 60 min.
期刊介绍:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.