Opportunities for nanomaterials in more sustainable aviation

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Afshin Pendashteh, Anastasiia Mikhalchan, Tamara Blanco Varela, Juan J. Vilatela
{"title":"Opportunities for nanomaterials in more sustainable aviation","authors":"Afshin Pendashteh,&nbsp;Anastasiia Mikhalchan,&nbsp;Tamara Blanco Varela,&nbsp;Juan J. Vilatela","doi":"10.1186/s11671-024-04087-5","DOIUrl":null,"url":null,"abstract":"<div><p>New materials for electrical conductors, energy storage, thermal management, and structural elements are required for increased electrification and non-fossil fuel use in transport. Appropriately assembled as macrostructures, nanomaterials can fill these gaps. Here, we critically review the materials science challenges to bridge the scale between the nanomaterials and the large-area components required for applications. We introduce a helpful classification based on three main macroscopic formats (fillers in a matrix, random sheets or aligned fibres) of high-aspect ratio nanoparticles, and the corresponding range of bulk properties from the commodity polymer to the high-performance fibre range. We review progress over two decades on macroscopic solids of nanomaterials (CNTs, graphene, nanowires, etc<i>.</i>), providing a framework to rationalise the transfer of their molecular-scale properties to the scale of engineering components and discussing strategies that overcome the envelope of current aerospace materials. Macroscopic materials in the form of organised networks of high aspect ratio nanomaterials have higher energy density than regular electrodes, superior mechanical properties to the best carbon fibres, and electrical and thermal conductivity above metals. Discussion on extended electrical properties focuses on nanocarbon-based materials (e.g., doped or metal-hybridised) as power or protective conductors and on conductive nanoinks for integrated conductors. Nanocomposite electrodes are enablers of hybrid/electric propulsion by eliminating electrical transport limitations, stabilising emerging high energy density battery electrodes, through high-power pseudocapacitive nanostructured networks, or downsizing Pt-free catalysts in flying fuel cells. Thermal management required in electrified aircraft calls for nanofluids and loop heat pipes of nanoporous conductors. Semi-industrial interlaminar reinforcement using nanomaterials addresses present structural components. Estimated improvements for mid-range aircraft include &gt; 1 tonne weight reduction, eliminating hundreds of CO<sub>2</sub> tonnes released per year and supporting hybrid/electric propulsion by 2035.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04087-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04087-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

New materials for electrical conductors, energy storage, thermal management, and structural elements are required for increased electrification and non-fossil fuel use in transport. Appropriately assembled as macrostructures, nanomaterials can fill these gaps. Here, we critically review the materials science challenges to bridge the scale between the nanomaterials and the large-area components required for applications. We introduce a helpful classification based on three main macroscopic formats (fillers in a matrix, random sheets or aligned fibres) of high-aspect ratio nanoparticles, and the corresponding range of bulk properties from the commodity polymer to the high-performance fibre range. We review progress over two decades on macroscopic solids of nanomaterials (CNTs, graphene, nanowires, etc.), providing a framework to rationalise the transfer of their molecular-scale properties to the scale of engineering components and discussing strategies that overcome the envelope of current aerospace materials. Macroscopic materials in the form of organised networks of high aspect ratio nanomaterials have higher energy density than regular electrodes, superior mechanical properties to the best carbon fibres, and electrical and thermal conductivity above metals. Discussion on extended electrical properties focuses on nanocarbon-based materials (e.g., doped or metal-hybridised) as power or protective conductors and on conductive nanoinks for integrated conductors. Nanocomposite electrodes are enablers of hybrid/electric propulsion by eliminating electrical transport limitations, stabilising emerging high energy density battery electrodes, through high-power pseudocapacitive nanostructured networks, or downsizing Pt-free catalysts in flying fuel cells. Thermal management required in electrified aircraft calls for nanofluids and loop heat pipes of nanoporous conductors. Semi-industrial interlaminar reinforcement using nanomaterials addresses present structural components. Estimated improvements for mid-range aircraft include > 1 tonne weight reduction, eliminating hundreds of CO2 tonnes released per year and supporting hybrid/electric propulsion by 2035.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信