Room-temperature co-upcycling of polyvinyl chloride and polypropylene

IF 25.7 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Zhiwen Gao, Yu Wang, Lei Yuan, Xinrui Shi, Yihao Shang, Jingang Jiang, Min Zhang, Shuhui Fang, Wei Zhang, Yue Liu
{"title":"Room-temperature co-upcycling of polyvinyl chloride and polypropylene","authors":"Zhiwen Gao, Yu Wang, Lei Yuan, Xinrui Shi, Yihao Shang, Jingang Jiang, Min Zhang, Shuhui Fang, Wei Zhang, Yue Liu","doi":"10.1038/s41893-024-01468-7","DOIUrl":null,"url":null,"abstract":"Co-upcycling of mixed plastics offers a viable approach to reusing carbon resources in plastic wastes and realizing circular economy. However, the presence of polyvinyl chloride (PVC) often complicates the co-upcycling processes, because chlorine (Cl) released from PVC can deactivate catalysts and enter final products. Moreover, existing plastic upcycling processes usually require harsh reaction conditions. Here we present a strategy enabling efficient co-upcycling of PVC and polypropylene (PP) at mild conditions. We use chlorine-resistant ionic liquids butylpyridinium chloride-aluminium chloride to dechlorinate PVC and simultaneously depolymerize the PP–PVC mixture into Cl-free liquid hydrocarbons, with the co-production of hydrogen chloride (HCl) as byproduct. This conversion approach operates at room temperature without the use of external hydrogen or noble metal catalysts. The Cl-free liquid hydrocarbon yield is up to 97.4 wt% of C and H in the feed PP–PVC mixture. This work can incentivize further technical development in plastic upcycling and improve the sustainability of plastic waste management. Upcycling of mixed plastics containing polyvinyl chloride is challenging. This study reports a strategy to co-upcycle polyvinyl chloride with polypropylene to obtain dechlorinated liquid hydrocarbons at high yields at room temperature without the use of external hydrogen or noble metal catalysts.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"7 12","pages":"1691-1698"},"PeriodicalIF":25.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01468-7","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Co-upcycling of mixed plastics offers a viable approach to reusing carbon resources in plastic wastes and realizing circular economy. However, the presence of polyvinyl chloride (PVC) often complicates the co-upcycling processes, because chlorine (Cl) released from PVC can deactivate catalysts and enter final products. Moreover, existing plastic upcycling processes usually require harsh reaction conditions. Here we present a strategy enabling efficient co-upcycling of PVC and polypropylene (PP) at mild conditions. We use chlorine-resistant ionic liquids butylpyridinium chloride-aluminium chloride to dechlorinate PVC and simultaneously depolymerize the PP–PVC mixture into Cl-free liquid hydrocarbons, with the co-production of hydrogen chloride (HCl) as byproduct. This conversion approach operates at room temperature without the use of external hydrogen or noble metal catalysts. The Cl-free liquid hydrocarbon yield is up to 97.4 wt% of C and H in the feed PP–PVC mixture. This work can incentivize further technical development in plastic upcycling and improve the sustainability of plastic waste management. Upcycling of mixed plastics containing polyvinyl chloride is challenging. This study reports a strategy to co-upcycle polyvinyl chloride with polypropylene to obtain dechlorinated liquid hydrocarbons at high yields at room temperature without the use of external hydrogen or noble metal catalysts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Sustainability
Nature Sustainability Energy-Renewable Energy, Sustainability and the Environment
CiteScore
41.90
自引率
1.10%
发文量
159
期刊介绍: Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions. Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信