{"title":"Numerical Stress Analysis of TBCs at Film Cooling Hole's Edge based on TBC-Film Cooling System","authors":"Da Qiao, Wu Zeng","doi":"10.1007/s11666-024-01863-8","DOIUrl":null,"url":null,"abstract":"<div><p>It is of great significance to better clarify the failure mechanism of thermal barrier coatings (TBCs) with film cooling hole edges to prolong the TBCs’ service life. In this paper, a numerical study of the film cooling model of flat plate with TBCs is carried out. The temperature field distribution of the TBCs is obtained by conjugate heat transfer, and the stresses of the TBCs at the edge of the film cooling hole are analyzed under real operating conditions, taking into account the TGO growth, plasticity, and creep properties of the material. The results show that due to the lower temperature of the film cooling hole edge, the TGO growth is slowed down, and the free-edge effect brought by the film cooling hole will play a large influence on the coating stress. The TBCs will have a large interfacial stress at the room temperature stage, and it will be more prone to flaking failure. The substrate, on the other hand, bears a larger stress in the high temperature stage.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 8","pages":"2627 - 2640"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01863-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
It is of great significance to better clarify the failure mechanism of thermal barrier coatings (TBCs) with film cooling hole edges to prolong the TBCs’ service life. In this paper, a numerical study of the film cooling model of flat plate with TBCs is carried out. The temperature field distribution of the TBCs is obtained by conjugate heat transfer, and the stresses of the TBCs at the edge of the film cooling hole are analyzed under real operating conditions, taking into account the TGO growth, plasticity, and creep properties of the material. The results show that due to the lower temperature of the film cooling hole edge, the TGO growth is slowed down, and the free-edge effect brought by the film cooling hole will play a large influence on the coating stress. The TBCs will have a large interfacial stress at the room temperature stage, and it will be more prone to flaking failure. The substrate, on the other hand, bears a larger stress in the high temperature stage.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.