{"title":"Monitoring the Cold Spray Process: Real-Time Particle Velocity Monitoring Through Airborne Acoustic Emission Analysis","authors":"Stratos Koufis, Nathan Eskue, Dimitrios Zarouchas, John-Alan Pascoe","doi":"10.1007/s11666-024-01878-1","DOIUrl":null,"url":null,"abstract":"<div><p>Continuous monitoring of spray velocity during the cold spray process would be desirable to support quality control, as spray velocity is the key process parameter determining the deposit quality. This study explores the feasibility of utilising Airborne Acoustic Emission (AAE) for real-time monitoring of spray velocity. Six spray tests were conducted, varying pressure and temperature to achieve different velocities. Optical means were used to measure velocity; while, the signal from the AAE was captured during deposition via a microphone. Features demonstrating a strong correlation with velocity were extracted from the acoustic signals. Both rule-based and machine learning models were employed to identify the moments where the nozzle was engaged with the substrate and diagnose the velocity. The results indicate that monitoring the spray velocity of the cold spray process using AAE is feasible.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 8","pages":"2657 - 2671"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01878-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous monitoring of spray velocity during the cold spray process would be desirable to support quality control, as spray velocity is the key process parameter determining the deposit quality. This study explores the feasibility of utilising Airborne Acoustic Emission (AAE) for real-time monitoring of spray velocity. Six spray tests were conducted, varying pressure and temperature to achieve different velocities. Optical means were used to measure velocity; while, the signal from the AAE was captured during deposition via a microphone. Features demonstrating a strong correlation with velocity were extracted from the acoustic signals. Both rule-based and machine learning models were employed to identify the moments where the nozzle was engaged with the substrate and diagnose the velocity. The results indicate that monitoring the spray velocity of the cold spray process using AAE is feasible.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.